ASHA: AGENT BASED SECURE HOST

ARP CACHE MANAGEMENT

Ranjith Kanna Kanna, Venkatramulu Sunkari, Assoc. Professor, Department of Computer Science and Engineering
KITS, Warangal, Andhra Pradesh-506002

Abstract—Host systems are exchange their IP-MAC pairs to establish communication. ARP (address resolution protocol) is maintains the IP-MAC pair of address of host in the cache table when the messages are receiving and send from the hosts. The ARP is update and maintains the cache table. ARP spoofing and dos attack can early attack for the IP-MAC pairs, if we send the IP-MAC pairs without security.

To protect ARP from vulnerability, may existing system provide their approach to protected for ARP. Some approach use high cost hardware and some approach’s need to change the structure of kernel, there create problem of compatibility issues, all these approaches interfere and degrades the performance of the system. In our proposer approach, we provide to overcome the using the ASHA. We can easily protect from the ARP vulnerabilities. ASHA uses the cryptography (public key, private key) TCP packets to exchange the IP-MAC pair between the hosts. We implement this software in windows-XP with auto it scripting language. The result shows that ASHA installed systems protected from ARP attacks.

Index Terms—ARP, TCP, PUBLIC KEY, PRIVATE KEY

I. INTRODUCTION

ARP is use to bind the addresses, sending an ARP request for each datagram is inefficient; three frames traverse in the network for each datagram (an ARP request, ARP response, and the datagram). ARP manages the table as a cache — an entry is replaced when a reply arrives, and the previous entry is removed whenever the table runs out of space or after an entry has not been updated for a long period (e.g., 20 minutes). If the binding is not present in the cache, ARP broadcasts a request, waits for a reply, then changes the cache, and then forward to use the binding. [1]

ARP threats occurs because of the lack of improper authentication and duplicate ARP request and replies. Attacker tries to broadcast the ARP request message to different hosts in the network to manipulate the IP and MAC address of the other host. After receiving ARP request messages from attacker, user host system send response to the attacker system and update the ARP cache table with attacker IP and MAC address. Some persons proposed the solutions for these problems; the results prove that most of the ideas impractical need to change the ARP design framework, high costly hardware need to monitor the malicious ARP threats or ARP packets in Encryption format. [2]

We propose to install software ASHA between the IP and MAC layers to provide authentication and perform the following activities

(i) Scan the ARP request and reply messages based on Encryption process
(ii) ARP cache table in static mode

Here we implement ASHA on windows xp and perform some experiments. The result proves that the software installed on hosts is protect from ARP hacking tools, hosts send, and receive packets with authentication. [3]. this paper organized as follows: Section 2 Existing ARP threats based on RFC 826. Section 3 Related works about Encryption/Decryption; Hosts based securities, Section.4, we design ASHA packet format and implementation with TCP [5] packets to maintain ARP cache in static and in automatic mode. Section 5 concludes the paper.

II. EXISTING ARP THREATS

2.1 Man in the Middle

A hacker can exploit ARP Cache Poisoning to intercept network traffic between two devices in your network. An attacker wants to see all the traffic between computers, 192.168.16.12, and your Internet router, 192.168.16.1. The hacker begins by sending a malicious ARP “reply” (for which there was no previous request) to router, associating his computer’s MAC address with 192.168.16.12[4].

2.2 ARP spoofing

The ARP spoofing attack based on impersonating a system in the network, the two hosts systems believe their communication and the other end is the attacker’s system, intercepting the traffic interchanged. To achieve this goal, the attacker just needs to send a previously modified ARP packet, method known as packet creating, to the source system of a given communication saying that the destination IP address belongs to his own MAC address. [3]

III. RELATED WORKS

Countermeasures for ARP attacks are follows:

(i) Encryption based
(ii) System(host or server) based
(iii) System (host or server) based

C) ES-ARP: An Efficient and Secure Address Resolution Protocol

Ataullah et al. proposed one of the latest and new proposals for ARP security mechanism. The main concept of this approach is to broadcast the ARP-replica. Therefore, that in the case of ARP attack the victim may be aware about the attack. The idea of broadcasting the ARP-replica may be considered as a better solution without third trusted party but this is only a detection technique and the attack cannot be prevent by this proposed solution. The cloning attack is also possible by using the broadcasting mechanism to secure ARP. The attacker can make use of MAC spoofing attack and ES-ARP will not be capable to detect the difference between real and fake user. [7]

D) Preventing ARP Attacks using a Fuzzy-Based Stateful ARP Cache

Zouheir Trabelsi et al proposed prevention mechanism is based on the use of a stateful ARP cache. When sender generates an ARP request to get the MAC address of receiver host, an entry is added in its stateful ARP cache, with the status of “Waiting”. Sender waits for an ARP reply, within a predefined timeout. If an ARP reply comes, then sender waits another timeout in order to collect other possible ARP replies sent by other hosts in the communication. Note that if host A receives more than one ARP reply, then this means that most likely more than one receiver replies. [8]

IV. PROPOSED APPROACH

Main contribution of this paper is that how to maintain the integrity of ARP cache entries in static mode and automatically update the table when we send and receive the messages. Proposed approach only grants agent the authority to exchange the IP_MAC address, eliminate the ARP protocol threats without requiring of modifying of kernel, and secure server. We implemented our idea, ASHA installed system provide communication to exchange the ARP details. Agent protected systems exchange their ARP request and Reply in the form TCP packets. Generally TCP packet format in ARP is

EXISTING ARP PACKET FORMAT:

The above packet format shows that format of ARP message in that we have source, destination, IP addresses and MAC address and opcode, sender and receiver protocols.

If we use this format to send the ARP message to the destination, the attacker easily capture the information. In these formats there is no protection for sender and receiver IP address. This is main drawback of ARP message format.

PROPOSED ARP PACKET FORMAT:

<table>
<thead>
<tr>
<th>Hardware Type</th>
<th>Protocol Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encrypted Sender protocol address</td>
<td>Encrypted Sender Protocol address</td>
</tr>
<tr>
<td>Target Hardware Address</td>
<td>Target Hardware Address</td>
</tr>
<tr>
<td>Encrypted Target Protocol address</td>
<td>Encrypted Target Protocol address</td>
</tr>
<tr>
<td>Encrypted public key</td>
<td>Encrypted public key</td>
</tr>
</tbody>
</table>
The above ARP packet provides the proposed ARP packet format in this format the sender IP and MAC address is in the encryption process and the receiver MAC address also in the encryption process.

ASHA IMPLEMENTATION:
In the proposed approach we first generate the system public key. Based on this system public key perform encryption for IP and MAC address of sender system. Before performing encryption for IP and MAC pair we perform encryption for Public key using private key.

CODE for ARP request and Reply

Init()
Send ARP request destination
Encryption of IP and MAC using Encrypted Public key
Tcp recv()
If Destination IP and sender Ip is same
Check the public key empty or not
If Public key==XXX
Decrypt the public key and perform decryption for IP and MAC pair
 Store in the ARP cache
 Change the public key="""
 Send ARP reply
Else if public key="""
Check the destination IP and MAC with ARP cache IP and MAC
Not correct exit from the connection
Else
Disconnect connection

RESULTS

The above diagram shows that how we set the IP and MAC pairs in static mode and the how we send the request and reply to the destination.

Another diagram shows the outputs of the ASHA in static mode.

V. CONCLUSION
In this paper, we provide how the ARP attacks effectively defeat using the ASHA without changing of ARP Kernel. Many approaches propose solutions to ARP attacks, to provide security for ARP, change the kernel, maintain the ARP cache table in dynamic mode: ARP cache is in dynamic mode; attacker can easily capture the information.

We implemented ASHA to provide security for ARP, these blocks the unauthenticated exchange of hosts. We perform some experiments using these software, that results show that the ARP cache table automatically updated when message receiving are sending in static mode. The proposed approach ASHA uses TCP packets containing IP_MAC pairs encrypted by a public key is encrypted by private key, to control the ARP request and reply messages.

VI. ACKNOWLEDGMENTS
First, we would like to thank our Department of Computer Science & Engineering, KITS, WARANGAL, which was always there for us listen our problems, give their valuable advices and providing resources for this research. Finally yet importantly, we want to express our sincere thanks to Faculties of KITS, Warangal.

VII. REFERENCES
[3] ASA: agent-based secure ARP cache management. Oh1 Y.-G. Kim1 S. ong2 S. Cha1