
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 7, Issue 5, May 2018, ISSN: 2278 – 1323

 www.ijarcet.org 504



Abstract— Biological sequence alignment is becoming popular and

interesting field to researchers especially the Bioinformatists. Two

sequences with similar or varying lengths can be aligned using any

alignment algorithm like Smith-Waterman Algorithm (SWA),

Needleman-Wunsch Algorithm (NWA), BLAST, FASTA etc. Some of

these algorithms are fast but lack accuracy (like FASTA and BLAST)

while some are accurate at the expense of time (like SWA). SWA uses a

dynamic programming approach with time and space constraint.

Various methods (like systolic array method, implementation of the

algorithm on FPGA etc.) have been applied on algorithm by various

researchers to reduce or eliminate the computational complexity. This

paper focuses on Recursive Variable Expansion (RVE) using parallel

approach on the algorithm of Smith-Waterman to tackle the problem

of time constraints in the algorithm and compare the result with

another researcher’s work.

Index Terms— Smith-Waterman Algorithm, Recursive Variable

Expansion, Dynamic programming, Systolic array, Parallel approach,

Time constraint, Space constraint, Sequence alignment.

I. INTRODUCTION

In computational biology, sequence alignment is an important

aspect in which known and unknown functionalities of biological

sequences are compared [1]. The main objective is to determine the

optimal alignment between the two sequences whose lengths may be

similar or vary. Alignment score is computed based on the total

number of gap penalty , matches and mismatches in the alignment.

Biological sequence alignment is classified into local and global

alignment. In local sequence alignment, optimal value is calculated

from the most similar sub-region common to both sequences while

in global alignment, the two sequences must be of similar length and

the optimal value is computed from beginning to the end of the

sequences [2]. The most common biological sequence alignment

algorithms are Needleman-Wunsch Agorithm (NWA) and

Smith-Waterman Algorithms (SWA). These two algorithms are

commonly used to find global and local alignment respectively

[3,4,5]. The two alignments are based on dynamic programming

technique with space and time complexity of O(mn) [6] where m and

n are the lengths of the two sequences being considered for

alignment.

Apart from SWA and NWA mentioned above, there are other

alignment algorithms like BLAST and FASTA. These algorithms

use heuristic technique [7,8,9]. They are very fast at the expense of

Manuscript received April , 2018.

 Hassan Kehinde Bello, Department of Computer Science, Federal Polytechnic,

Offa. Nigeria.

Kazeem Alagbe Gbolagade, Department of Computer Science, Kwara state

university Malete, Nigeria

accuracy. Contrarily, SWA is accurate at the expense of time.

However, it is the most accurate biological sequence alignment

available but the computational complexity makes it slow in real

applications [10]. Researchers have attempted various approaches to

improve the acceleration of SWA. Some are based on software and

some parts are implemented on hardware [11, 12,13]

The remaining part of the paper is organized as follows; in section 2,

we present the background, in section 3, we discuss recursive

variable expansion, in section 4, we present our results and

discussion and finally the paper concluded in section 5.

II. BACKGROUND

SWA is used for biological sequence alignment based on dynamic

programming approach. It identifies common regions in sequence

that share local similarity characteristics [14].

A. The Smith Waterman Algorithm

The optimal local alignment of two sequences X an Y is given by

algorithm of SW in equation (1) for the computation of local

alignment of matrix Mi,j

 0

 M(i-1,j-1) + S(xi,yj) match/mismatch

 M(i,j)=Max M (i-1,j) +g ………………. (1)

 M (i,j-1) +g

where M(0,0) = 0, M(0,j) = g × j and M(i,0) = g × i, for 1 ≤ i ≤ n,1

≤ j ≤ m. The g is the penalty for inserting a gap in any of the sequence

and M(i,j) is the score for match/mismatch, depending upon whether

X[i] = Y[j] or X[i] ≠ Y[j].

The time complexity of the initialization step is O(m + n), where

m is the number of rows and n is the number of columns in the matrix

M.

1) Steps in the algorithm of Smith Waterman

Step 1: Initialization:

At the initialization step, the matrix M(i,j) will be initialized with

M0,j = 0 and Mi,0 = 0, for all i and j as shown in fig 1. At this step, the

time complexity is given by is O(m + n), where m is the total number

of rows and n is the total number of columns in the sequences X and

Y respectively.

Step 2: Matrix filling

The equation 1 will be used to fill up all the entries in the matrix

Mi,j based on given scoring parameter (fig. 3). At this step, the time

complexity is equal to the number of cells in the matrix i.e O(mn).

Step 3: Trace back

At the end of step 2 above, the cell with the highest score will be

located at the bottom right of the matrix and traced back to get the

Acceleration of Algorithm of Smith-Waterman

Using Recursive Variable Expansion.

Hassan Kehinde Bello and Kazeem Alagbe Gbolagade

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 7, Issue 5, May 2018, ISSN: 2278 – 1323

 All Rights Reserved © 2018 IJARCET 505

optimal local alignment (fig. 4). The time complexity of the trace

back is given by O(m + n).

At the end of step 3, the total time complexity of Smith-Waterman

algorithm is given by O(m+n) + O(mn) + O(m+n) = O(mn). Also,

the space complexity of the algorithm is given by O(mn) because the

size of the matrix is m x n.

Example:

Given the sequences X: AGGTCA and Y: CGTGTAA with

match = 2, mismatch = 1 and gap = 1

 A G G T C A

 0 0 0 0 0 0 0

C 0

G 0

T 0

G 0

C 0

A 0

A 0
Fig. 1: initialization step

To parallelize SW algorithm we consider data dependency will

reduce the O(mn) complexity in the filling of the matrix, we use a

parallel calculation in which Mi,j entry depends on the values of

three neighboring entries Mi,j−1, Mi−1,j and Mi−1,j−1, where each of

those entries is also depending on the values of three neighboring

entries, which makes data dependency extends to every other entry

in the region [14]. The entries (i-1,j-1), (i,j-1) and (i-1,j) will be

computed before the entry (i,j) is computed due to data dependency.

This makes all elements in the anti-diagonal to be calculated

simultaneously since they fall outside each data dependency region.

 The following points in parallelism are worth noted:

 The degree of parallelism is constrained to the number of

elements in the anti diagonal.

 The number of elements in the longest anti diagonal is LD =

min(m,n)

 In m x n matrix, the number of anti diagonal require to reach

the bottom right is (m+n-1)

Fig 2: Sample data dependency matrix M7,6

Fig. 2 is a sample matrix with m = 7 and n = 6, the long arrow

shows the direction in which computation progresses [15]. At least

12 cycles (anti diagonal) are involved in this computation and only

six cells can be computed in parallel. The processing elements and

the number of elements in the longest anti-diagonal (LD) is given to

be 6 in fig. 2.

Fig 3. Matrix filling step

Fig. 4. Trace back step

Fig. 5 represents an implementation used to compute an element

in matrix Mi,j. in the scheme, there is one Look-up Table (LUT),

three comparators (^) and three adders (+). It will take 4 cycles time

to compute one element.

 A G G T C A

 0 0 0 0 0 0 0

C 0 1 1 1 1 2 1

G 0 1 3 3 2 2 2

T 0 1 2 4 5 4 3

G 0 1 3 4 5 6 5

C 0 1 2 4 6 6 7

A 0 2 2 3 2 7 8

A 0 2 3 3 4 6 9

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 7, Issue 5, May 2018, ISSN: 2278 – 1323

 www.ijarcet.org 506

M(i,j)

 cycle4

 cycle 3

 cycle 2

 cycle 1

 M(i-1,j) g M(i, j-1) X(i-1,j-1) Xi Yi 0

Fig. 5: Computational circuit for matrix Mi,j

Fig. 3 above contains 3 adders, 2 comparators (˄) and 1 look

up table (LUT). This makes it possible to simultaneously

compute all the elements in each anti diagonal, since they fall

outside each other’s data dependency regions [15]. We can

reduce the complexity O(mn) at the fill up stage by

computing the entries of the matrix in parallel.

 III. RECURSIVE VARIABLE EXPANSION

The method of eliminating data dependencies from a

program for the sake of parallelization is known as Recursive

Variable Expansion (RVE). is a technique which removes

the loop carried data dependencies among the various

statements of the program to execute every statement in

parallel [16],[17],[18],[19] For example, if a statement (Si)

depends on another statement (Wj) instead of waiting for the

completion of Wj before executing statement Si, all

occurrence of variables in Si that create dependency can be

replaced with the computation of their variables in Wj. By

this, there will be no need to wait for the completion of

statement of Wj, statement Si can then be executed

independent of Wj [20].

Example, Consider the following

 C(i) =1

 for i = 2 to 6

 C(i) = C(i-1) + i

 end for

RVE can be applied to the above algorithm as

C(6) = C(5) + 6

 = C(4) + 5+6

 = C(3) + 4+5+6

 = C(2) + 3+4+5+6

 = C(1) + 2+3+4+5+6

 = 1+ 2+3+4+5+6

B. Approach to our scheme

Fig.6 is a structure derived when RVE is applied to

compute the maximum value of Mi,j in equation 1. It reduces

to sub equations which also reduce to more sub equation

before arriving on the maximum value of Mi,j.

 M(i,j) = max

 A B C 0

 D E F G H I J K L

 M N O P Q R
 Fig. 6: derived structure

Where,

A= M(i,j-1) + g

B = M(i-1,j-1) + s(i,j)

C = M(i-1,j) + g

D = H(i,j−2)+2g

E= H(i−1,j−2)+g+s(i,j−1)

F= H(i−1,j−1)+2g

˄

˄

+

LUT

˄

+ +

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 7, Issue 5, May 2018, ISSN: 2278 – 1323

 All Rights Reserved © 2018 IJARCET 507

G= H(i−1,j−2)+g+s(i,j)

H = H(i−2,j−2)+s(i−1,j−1)+s(i,j)

I= H(i−2,j−1)+g+s(i,j)

J= H(i−1,j−1)+2g

K= H(i−2,j−1)+g+s(i−1,j)

L= H(i−2,j)+2g

M= H(i−1,j−2)+3g

N= H(i−2,j−2)+2g+s(i−1,j−1)

O = H(i−2,j−1)+3g

P = H(i−1,j−2)+3g

Q= H(i−2,j−2)+ 2g +s(i−1,j−1)

R= H(i−2,j−1)+3g

From equation 2 which is the extraction of Fig. 6 (derived

from equation 1), If recursive variable expansion is applied.

Equation 2 is written as the maximum of Mi,j. Thirteen

independent equations are obtained from fig 6. These sub

equations can be computed in parallel to obtain the maximum

VALUE OF Hi,j. The thirteen equations will require four

levels as log2 13 = 4 (fig 5).

0

D = M(i,j−2)+2g

E = M(i−1,j−2)+g+s(i,j−1)

M = M(i−1,j−2)+3g
N=M(i−2,j−2)+2g+s(i−1,j−1)

O = M(i−2,j−1)+3g

 M(i,j) = Max G = M(i−1,j−2)+g+s(i,j) ……... (2)

 H = M(i−2,j−2)+s(i−1,j−1)+s(i,j)

 I = M(i−2,j−1)+g+s(i,j)

P = M(i−1,j−2)+3g

 Q = M(i−2,j−2)+ 2g +s(i−1,j−1)

R = M(i−2,j−1)+3g

K == M(i−2,j−1)+g+s(i−1,j)

L = M(i−2,j)+2g

 As the value of gap (g) is -2, equation 2 becomes

 0

D = M(i,j−2)-4

E = M(i−1,j−2)+s(i,j−1) -2

M = M(i−1,j−2)-6
N = M(i−2,j−2)+s(i−1,j−1) -4

O = M(i−2,j−1)-6

 M(i,j) = Max G = M(i−1,j−2)+s(i,j) -2 ………(3)

 H = M(i−2,j−2)+s(i−1,j−1)+s(i,j)

I = M(i−2,j−1)+s(i,j) -2

P = M(i−1,j−2)-6

Q = M(i−2,j−2)+s(i−1,j−1) -4

R = M(i−2,j−1)-6

 K = M(i−2,j−1)+s(i−1,j) -2

 L = M(i−2,j)-4

From equation (3), M(i,j) can be computed by eliminating

repeated equations since they add no value to it.

For the value of s(i,j) = -1, i-1 and j-1[1] are present in E, M,G

and P given as

 0

E = M(i−1,j−2)-1 -2 = M(i−1,j−2)-3

 Max M(i,j) = M = M(i−1,j−2)-6

 G = M(i−1,j−2)-1 -2 = M(i−1,j−2)-3

 P = M(i−1,j−2)-6 …………(4)

It is clear that neither M nor P can be maximum, therefore the

maximum is between E and G. Equation 2 can now be

reduced to the equation 4 and equation 5.

0
D = M(i,j−2)-4

E = M(i−1,j−2)+s(i,j−1) -2

 G = M(i−1,j−2)+s(i,j) -2

 M(i,j) = Max H = M(i−2,j−2)+s(i−1,j−1)+s(i,j)

 K = M(i−2,j−1)+s(i−1,j) -2

 I = M(i−2,j−1)+s(i,j) -2

 L = M(i−2,j)-4 ………………(5)

In order to compute the maximum of equation (4), we use

log27 = 3 levels and this is better than 4 levels. From equation

4, the following fig. 7(a), 7(b), 7(c) and 7(d) can be

calculated. To compute O1 for a block of 3x3 elements we

shall use i, ii, iii, iv and v (fig. 7a). Other blocks O2,O3 and

O4 can be calculated as well using a block of 3x3 elements in

a similar way as shown in fig 7(b), 7(c) and 7(d) respectively.

 i-2 i-1 i

J-2 iii ii i

 J-1 iv O4 O2

J v O3 O1

 Fig 7(a)

 Fig 7(b)

 i-2 i-1 i

j-2 ii i

j-1 iii O4

J iv O3

 Fig 7(c)

 fig. 7(d)

In M(i,j), O2 is calculated using i,ii,iii and iv; O3 is

calculated using i,ii,iii and iv and finally O4 is calculated

using i, ii and iii

C. Calculation of Time

In a matrix of 3x3 blocks, the values M(i,j), M(i-1,j),

M(i,j-1) and M(i-1,j-1) can be computed in parallel since all

the values are independent of one another. The total time

taken to compute all the variables is the same as the time

 i-2 i-1 i

j-2 iii Ii i

j-1 iv O4 O2

J

 i-2 i-1 i

j-2 ii i

j-1 iii O4

J

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 7, Issue 5, May 2018, ISSN: 2278 – 1323

 www.ijarcet.org 508

taken to compute M(i,j) in parallel.

Table 1: Time estimation for 3 block

 Table 2: Time estimation to compute 7 lines

Processing time Level

1 Time to compute maximum of three

elements:

3

levels

2 Time taken to compute s(i,j) in
parallel:

1 level

3 Time used by the adders: 2

levels

4 Total number of time required to

compute one element:

6

levels

5 Total time taken to compute 7 lines

serially 7 x 6 levels

42

levels

 Speed up obtained by our scheme =
𝟒𝟐

𝟏𝟓
= 𝟐.𝟖

Table 3: Comparison of acceleration

 with value of m = n = 100

T

a

Table 4: comparison of result

III. RESULTS AND DISCUSSION

Table 1 shows processing in 3 blocks and table2

computes 7 lines serially. The results obtained by this

method clearly confirmed that a reasonable amount of

speed (51%) is gained when the block size is increased as

shown in table 3 and table 4. In either case of table 3 and

table 4 (when block size = 3), we gained more

acceleration than when block size =2. The final result with

block size =3 is compared with [14] when block size = 2,

this shows that acceleration is achieved with increment in

block size.

IV. CONCLUSION

In this paper we presented acceleration of SWA using

Recursive Variable Expansion and better acceleration is

achieved when the block size is increased. Our result is

compared with other researcher and we concluded that block

size determines acceleration in the algorithm of

Smith-Waterman.

REFERENCES

[1] [1] Hassan K. B., Kazeem A. G. “Residue Number System: An

Important Application in Bioinformatics”, International Journal of

Computer Applications (0975 – 8887) Volume 179 – No.10, January

2018

[2] Hassan K. B., Kazeem A. G.” Application of Smith-Wateman and

NeedlemanWunsch Algorithm in Pairwise Sequence Alignment of

Deoxyribonucleic Acid”, Proc. of the 1
st
 International Conference of

IEEE Nigeria Computer Chapter In collaboration with Dept. of

Computer Science, University of Ilorin, Ilorin, Nigeria – 2016.

[3] S. Needleman and C. Wunsch, “A general method applicable to the

search for similarities in the amino acid sequence of two proteins,” J.

Mol Biol., vol. 48, pp. 443–453, 1970

[4] S.F Altschul etal. Basic Alignment Search Tool. J.Mol.Biol.,

pages403-410,1990

[5] T. Smith and M. Waterman, “Identification of common molecular

subsequences,” J. Mol. Biol., vol. 147, pp. 195–197, 1981.

[6] Zubair, N Zaid A, Koen B, M<udassir S. “ Acceleration of

Smith-Waterman using Recursive Variable Expansion” conference

paper DOI: 10.1109/DSD.2008.32

[7] Lipman, DJ; Pearson, WR (1985). "Rapid and sensitive protein

similarity searches" Science 227 (4693): 1435–41.

doi:10.1126/science.2983426. PMID 2983426.

[8] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,

“Basic local alignment search tool,” Journal of Molecular Biology, vol.

215, no. 3, pp. 403–410, 1990. View at Publisher · View at Google

Scholar · View at Scopus [12] S. F. Altschul, T. L. Madden, A.

[9] Schäffer et al., “Gapped BLAST and PSI-BLAST: a new generation of

protein database search programs,” Nucleic Acids Research, vol. 25,

no. 17, pp. 3389–3402, 1997. View at Publisher · View at Google

Scholar · View at Scopus

[10] T. F. Smith and M. S. Waterman, “Identification of common molecular

subsequences”, Journal of Molecular Biology, vol. 147, pp: 195–197,

[11] Laiq Hasan and Zaid Al-Ars, “Performance Improvement of the

Smith-Waterman Algorithm”, Annual Workshop on Circuits, Systems

and Signal Processing (ProRISC 2007), November 29–30, 2007,

Veldhoven, The Netherlands.

Processing time Level

1 computation of maximum of

seven equations:

2 levels

2 Computation of s(i,j) in parallel: 1 level

3 Time used by the adders: (3

adders)

 2 levels

4 Total number of time required to

compute one element

5 levels

 Total time to compute 3 blocks

in serial diagonal: 3 x 5

level

15

levels

 Values Speed

Up

Speed

blocking

factor

Serial

approach

4mn

40000

1 -

Hardware
acceleration

4(m+n-1)
796

50 -

Rec. Var.

Exp

with b = 3

7(
𝑚

3
+

𝑛

3
− 1)

460

87 1.74

 Block size Speed

blocking

factor

[14] 2 1.36

Our scheme 3 2.8

 % speed 51%

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 7, Issue 5, May 2018, ISSN: 2278 – 1323

 All Rights Reserved © 2018 IJARCET 509

[12] Y. Yamaguchi, Y. Miyajima, T. Maruyama, and A. Konagaya, “High

Speed Homology Search Using Run-Time Reconfiguration”, FPL

2002.

[13] A. Di Blas et. al., “The UCSC Kestrel Parallel Processor”, IEEE

Transactions on Parallel and Distributed Systems, vol. 16(1), pp:

80–92, 2005.

[14] Laiq Hasan Zaid Al-Ars Zubair Nawaz Koen Bertels “Hardware

Implementation of the Smith-Waterman Algorithm Using Recursive

Variable Expansion”

[15] Laiq Hasan Zaid Al-Ars Zubair Nawaz “A Novel Approach for

Accelerating the Smith-Waterman Algorithm using Recursive Variable

Expansion” Delft University of Technology Computer Engineering

Laboratory Mekelweg 4, 2628 CD Delft, The Netherlands, 2014

[16] W. R. Pearson and D. J. Lipman, “Rapid and Sensitive Protein

Simlarity Searches”,Science, vol. 227, pp: 1435–1441, 1985.

[17] S. F. Altschul, Gish, W. Miller, W. Myers and D. J. Lipman, “A Basic

Local Alignment Search Tool”, Journal of Molecular Biology, vol.

215, pp: 403–410, 1990.

[18] J. Chiang, M. Studniberg, J. Shaw, S. Seto and K. Truong, “Hardware

Accelerator for Genomic Sequence Alignment”, Proceedings of the

28th IEEE EMBS Annual International Conference, Aug 30–Sept 3,

2006, New York City, USA.

[19] Y. Yamaguchi, Y. Miyajima, T. Maruyama, and A. Konagaya, “High

Speed Homology Search Using Run-Time Reconfiguration”, FPL

2002.

[20] Zubair Nawazl, Mudassir Shabbir, Zaid AlArs,etal “ Acceleration of

Biological Sequence Alignment using Recursive Variable Expansion.

