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Abstract— Biological sequence alignment is becoming popular and 

interesting field to researchers especially the Bioinformatists. Two 

sequences with similar or varying lengths can be aligned using any 

alignment algorithm like Smith-Waterman Algorithm (SWA), 

Needleman-Wunsch Algorithm (NWA), BLAST, FASTA etc. Some of 

these algorithms are fast but lack accuracy (like FASTA and BLAST) 

while some are accurate at the expense of time (like SWA). SWA uses a 

dynamic programming approach with time and space constraint. 

Various methods (like systolic array method, implementation of the 

algorithm on FPGA etc.) have been applied on algorithm by various 

researchers to reduce or eliminate the computational complexity. This 

paper focuses on Recursive Variable Expansion (RVE) using parallel 

approach on the algorithm of Smith-Waterman to tackle the problem 

of time constraints in the algorithm and compare the result with 

another researcher’s work. 
 

Index Terms— Smith-Waterman Algorithm, Recursive Variable 

Expansion, Dynamic programming, Systolic array, Parallel approach, 

Time constraint, Space constraint, Sequence alignment. 

 

I. INTRODUCTION 

In computational biology, sequence alignment is an important 

aspect in which known and unknown functionalities of biological 

sequences are compared [1]. The main objective is to determine the 

optimal alignment between the two sequences whose lengths may be 

similar or vary. Alignment score is computed based on the total 

number of gap penalty , matches and mismatches in the alignment. 

Biological sequence alignment is classified into local and global 

alignment. In local sequence alignment, optimal value is calculated 

from the most similar sub-region common to both sequences while 

in global alignment, the two sequences must be of similar length and 

the optimal value is computed from beginning to the end of the 

sequences [2]. The most common biological sequence alignment 

algorithms are Needleman-Wunsch Agorithm (NWA) and 

Smith-Waterman Algorithms (SWA). These two algorithms are 

commonly used to find global and local alignment respectively 

[3,4,5]. The two alignments are based on dynamic programming 

technique with space and time complexity of O(mn) [6] where m and 

n are the lengths of the two sequences being considered for 

alignment.   

 

Apart from SWA and NWA mentioned above, there are other 

alignment algorithms like BLAST and FASTA. These algorithms 

use heuristic technique [7,8,9]. They are very fast at the expense of 
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accuracy. Contrarily, SWA is accurate at the expense of time. 

However, it is the most accurate biological sequence alignment 

available but the computational complexity makes it slow in real 

applications [10]. Researchers have attempted various approaches to 

improve the acceleration of SWA. Some are based on software and 

some parts are implemented on hardware [11, 12,13] 

 

The remaining part of the paper is organized as follows; in section 2, 

we present the background, in section 3, we discuss recursive 

variable expansion, in section 4, we present our results and 

discussion and finally the paper concluded in section 5. 

 

II. BACKGROUND   

SWA is used for biological sequence alignment based on dynamic 

programming approach. It identifies common regions in sequence 

that share local similarity characteristics [14].     

 

A.  The Smith Waterman Algorithm  

The optimal local alignment of two sequences X an Y is given by 

algorithm of SW in equation (1) for the computation of local 

alignment of matrix Mi,j  

                        0                 

                        M(i-1,j-1) + S(xi,yj) match/mismatch 

 M(i,j)=Max    M (i-1,j) +g      ………………. (1) 

                        M (i,j-1) +g 

 

where M(0,0) = 0, M(0,j) = g × j and M(i,0) = g × i, for 1 ≤ i ≤ n,1 

≤ j ≤ m. The g is the penalty for inserting a gap in any of the sequence 

and M(i,j) is the score for match/mismatch, depending upon whether 

X[i] = Y[j] or X[i] ≠ Y[j]. 

The time complexity of the initialization step is O(m + n), where 

m is the number of rows and n is the number of columns in the matrix 

M. 

1) Steps in the algorithm of Smith Waterman   

 

Step 1:  Initialization:   

At the initialization step, the matrix M(i,j) will be initialized with 

M0,j = 0 and Mi,0 = 0, for all i and j as shown in fig 1. At this step, the 

time complexity is given by is O(m + n), where m is the total number 

of rows and n is the total number of columns in the sequences X and 

Y respectively. 

Step 2: Matrix filling  

The equation 1 will be used to fill up all the entries in the matrix 

Mi,j based on given scoring parameter (fig. 3). At this step, the time 

complexity is equal to the number of cells in the matrix i.e O(mn).   

Step 3: Trace back  

At the end of step 2 above, the cell with the highest score will be 

located at the bottom right of the matrix and traced back to get the 
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optimal local alignment (fig. 4). The time complexity of the trace 

back is given by O(m + n). 

At the end of step 3, the total time complexity of Smith-Waterman 

algorithm is given by O(m+n) + O(mn) + O(m+n) = O(mn).  Also, 

the space complexity of the algorithm is given by O(mn) because the 

size of the matrix is m x n. 

 

Example: 

Given the sequences X: AGGTCA  and Y: CGTGTAA with 

match = 2, mismatch = 1 and gap = 1 

 

  A G G T C A 

 0 0 0 0 0 0 0 

C 0       

G 0       

T 0       

G 0       

C 0       

A 0       

A 0       
Fig. 1: initialization step 

 

To parallelize SW algorithm we consider data dependency will 

reduce the O(mn) complexity in the filling of the matrix, we use a 

parallel calculation in which  Mi,j entry depends on the values of 

three neighboring entries Mi,j−1, Mi−1,j and Mi−1,j−1, where each of 

those entries is also depending on the values of three neighboring 

entries, which makes  data dependency extends to every other entry 

in the region [14]. The entries (i-1,j-1), (i,j-1) and (i-1,j) will be 

computed before the entry (i,j) is computed due to data dependency. 

This makes all elements in the anti-diagonal to be calculated 

simultaneously since they fall outside each data dependency region. 

 The following points in parallelism are worth noted: 

 The degree of parallelism is constrained to the number of 

elements in the anti diagonal.  

 The number of elements in the longest anti diagonal is LD = 

min(m,n) 

 In m x n matrix, the number of anti diagonal require to reach 

the bottom right is (m+n-1) 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
Fig 2: Sample data dependency matrix M7,6 

 

Fig. 2 is a sample matrix with m = 7 and n = 6, the long arrow 

shows the direction in which computation progresses [15].  At least 

12 cycles (anti diagonal) are involved in this computation and only 

six cells can be computed in parallel.  The processing elements and 

the number of elements in the longest anti-diagonal (LD) is given to 

be 6 in fig. 2. 

 

 
Fig 3. Matrix filling step 

 

 
Fig. 4. Trace back step 

Fig. 5 represents an implementation used to compute an element 

in matrix Mi,j. in the scheme, there is one Look-up Table (LUT), 

three comparators (^) and three adders (+). It will take 4 cycles time 

to compute one element. 

  A G G T C A 

 0 0 0 0 0 0 0 

C 0 1 1 1 1 2 1 

G 0 1 3 3 2 2 2 

T 0 1 2 4 5 4 3 

G 0 1 3 4 5 6 5 

C 0 1 2 4 6 6 7 

A 0 2 2 3 2 7 8 

A 0 2 3 3 4 6  9 
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M(i,j) 

 

                                                                                                                                                                               cycle4 

 

                                                                                                                                                                               cycle 3 

 

 

 

 

 

                                                                                                                                                                                cycle 2 

 

                                                                                                                                                       cycle 1 

 

 

 

 

 

 

 

 

 

                      M(i-1,j)                               g           M(i, j-1)             X(i-1,j-1)     Xi                   Yi         0 

 

Fig. 5: Computational circuit for matrix Mi,j 

 

 

Fig. 3 above contains 3 adders, 2 comparators (˄) and 1 look 

up table (LUT). This makes it possible to simultaneously 

compute all the elements in each anti diagonal, since they fall 

outside each other’s data dependency regions [15]. We can 

reduce the complexity O(mn) at the fill up stage by 

computing the entries of the matrix in parallel. 

                    III.       RECURSIVE VARIABLE EXPANSION  

The method of eliminating data dependencies from a 

program for the sake of parallelization is known as Recursive 

Variable Expansion (RVE).  is a technique which removes 

the loop carried data dependencies among the various 

statements of the program to execute every statement in 

parallel [16],[17],[18],[19]  For example, if a statement (Si) 

depends on another statement (Wj) instead of waiting for the 

completion of  Wj before executing statement Si, all 

occurrence of  variables in Si that create dependency can be 

replaced with the computation of their variables in Wj. By 

this, there will be no need to wait for the completion of 

statement of Wj, statement Si can then be executed 

independent of Wj [20].    

 
Example, Consider the following  

  C(i) =1 

            for  i = 2 to 6  

    C(i) = C(i-1) + i 

              end for 

 

RVE can be applied to the above algorithm as 

C(6) = C(5) + 6 

       = C(4) + 5+6 

       = C(3) + 4+5+6 

       = C(2) + 3+4+5+6 

       = C(1) + 2+3+4+5+6 

       = 1+ 2+3+4+5+6 

 

B.  Approach to our scheme   

 

Fig.6 is a structure derived when RVE is applied to 

compute the maximum value of Mi,j in equation 1. It reduces 

to sub equations which also reduce to more sub equation 

before arriving on the maximum value of Mi,j.     

              

                                          M(i,j) = max 

 

 

 

                          

                          A                    B                     C           0 

 

 
                 D    E   F    G    H   I     J    K     L       

 

 

 

                 M       N     O             P       Q    R 
                                       Fig. 6: derived structure   

Where,  

A= M(i,j-1) + g  

B = M(i-1,j-1) + s(i,j)  

C = M(i-1,j) + g  

D = H(i,j−2)+2g 

E=  H(i−1,j−2)+g+s(i,j−1) 

F=  H(i−1,j−1)+2g  

˄ 

˄ 

 

+ 

 

LUT 

˄ 
 

+ + 
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G=  H(i−1,j−2)+g+s(i,j) 

H = H(i−2,j−2)+s(i−1,j−1)+s(i,j) 

I=  H(i−2,j−1)+g+s(i,j) 

J=  H(i−1,j−1)+2g 

K= H(i−2,j−1)+g+s(i−1,j) 

L= H(i−2,j)+2g 

M=  H(i−1,j−2)+3g 

N= H(i−2,j−2)+2g+s(i−1,j−1) 

O =  H(i−2,j−1)+3g 

P =  H(i−1,j−2)+3g 

Q= H(i−2,j−2)+ 2g +s(i−1,j−1) 

R=  H(i−2,j−1)+3g 

 

From equation 2 which is the extraction of Fig. 6 (derived 

from equation 1), If recursive variable expansion is applied. 

Equation 2 is written as the maximum of Mi,j. Thirteen 

independent equations are obtained from fig 6. These sub 

equations can be computed in parallel to obtain the maximum 

VALUE OF Hi,j. The thirteen equations will require four 

levels as log2 13 = 4 (fig 5). 

 

 

0 

D = M(i,j−2)+2g 

E = M(i−1,j−2)+g+s(i,j−1) 

M =  M(i−1,j−2)+3g 
N=M(i−2,j−2)+2g+s(i−1,j−1) 

O =  M(i−2,j−1)+3g 

       M(i,j) = Max        G =  M(i−1,j−2)+g+s(i,j)  ……... (2) 

                                    H = M(i−2,j−2)+s(i−1,j−1)+s(i,j)     

             I =  M(i−2,j−1)+g+s(i,j) 

P =  M(i−1,j−2)+3g 

                                    Q = M(i−2,j−2)+ 2g +s(i−1,j−1) 

R =  M(i−2,j−1)+3g 

K == M(i−2,j−1)+g+s(i−1,j) 

L = M(i−2,j)+2g 

 

      As the value of gap (g) is -2, equation 2 becomes 

 0 

D = M(i,j−2)-4 

E = M(i−1,j−2)+s(i,j−1) -2 

M =  M(i−1,j−2)-6 
N = M(i−2,j−2)+s(i−1,j−1) -4 

O =  M(i−2,j−1)-6 

     M(i,j) = Max          G =  M(i−1,j−2)+s(i,j) -2   ………(3) 

                                    H = M(i−2,j−2)+s(i−1,j−1)+s(i,j)    

I =  M(i−2,j−1)+s(i,j)  -2 

P =  M(i−1,j−2)-6 

Q = M(i−2,j−2)+s(i−1,j−1) -4 

R =  M(i−2,j−1)-6 

                                     K = M(i−2,j−1)+s(i−1,j) -2 

                                     L = M(i−2,j)-4 

 
From equation (3), M(i,j) can be computed by eliminating 

repeated equations since they add no value to it. 

 

For the value of s(i,j) = -1, i-1 and j-1[1] are present in E, M,G 

and P given as 

 

 

 

 

 

 0 

E = M(i−1,j−2)-1 -2 = M(i−1,j−2)-3 

      Max M(i,j) =        M =  M(i−1,j−2)-6   

  G =  M(i−1,j−2)-1 -2 =  M(i−1,j−2)-3 

  P =  M(i−1,j−2)-6   …………(4) 

 

It is clear that neither M nor P can be maximum, therefore the 

maximum is between E and G. Equation 2 can now be 

reduced to the equation 4 and equation 5.  

 

0 
D = M(i,j−2)-4 

E = M(i−1,j−2)+s(i,j−1) -2 

                    G =  M(i−1,j−2)+s(i,j) -2 

  M(i,j) = Max           H = M(i−2,j−2)+s(i−1,j−1)+s(i,j)  

                                  K = M(i−2,j−1)+s(i−1,j) -2 

                                  I =  M(i−2,j−1)+s(i,j)  -2 

                                  L = M(i−2,j)-4  ………………(5) 

 

In order to compute the maximum of equation (4), we use 

log27 = 3 levels and this is better than 4 levels. From equation 

4, the following fig. 7(a), 7(b), 7(c) and 7(d) can be 

calculated. To compute O1 for a block of 3x3 elements we 

shall use i, ii, iii, iv and v (fig. 7a). Other blocks O2,O3 and 

O4 can be calculated as well using a block of 3x3 elements in 

a similar way as shown in fig 7(b), 7(c) and 7(d) respectively. 

 

  i-2 i-1 i 

J-2 iii ii i 

 J-1 iv O4 O2 

J v O3 O1 

                               Fig 7(a) 

 

 

                                Fig 7(b) 
 

  i-2 i-1 i 

j-2 ii i   

j-1 iii O4  

J iv O3  

                               Fig 7(c ) 

 

 

                                fig. 7(d) 

 

In M(i,j), O2 is calculated using i,ii,iii and iv; O3 is 

calculated using  i,ii,iii and iv  and finally O4 is calculated 

using i, ii and iii 

 

C. Calculation of  Time 

In a matrix of 3x3 blocks, the values M(i,j), M(i-1,j), 

M(i,j-1) and M(i-1,j-1) can be computed in parallel since all 

the values are independent of one another. The total time 

taken to compute all the variables is the same as the time 

  i-2 i-1 i 

j-2 iii Ii i 

j-1 iv O4 O2 

J    

  i-2 i-1 i 

j-2 ii i  

j-1 iii O4  

J    
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taken to compute M(i,j) in parallel. 

 
 

 

 

Table 1: Time estimation for 3 block 

 

 

 

 

 

                   

 
 

 

 

 

 

 

 

  

            Table 2: Time estimation to compute 7 lines 

Processing time Level  

1 Time to compute maximum of three 

elements: 

3 

levels 

2 Time taken to compute s(i,j) in 
parallel: 

1 level 

3 Time used by the adders: 2 

levels 

4 Total number of time required to 

compute one element: 

  

6 

levels 

5 Total time taken to compute 7 lines 

serially          7 x 6 levels 

 

42 

levels  

 Speed up obtained by our scheme = 
𝟒𝟐

𝟏𝟓
= 𝟐.𝟖 

 

 

 

 

Table 3: Comparison of acceleration 

                                   with value of m = n = 100 

 

 

 
 

 

 

 

 

 

 

 

T

a 

 

 

 

 
 

 

 

 

Table 4: comparison of result 

 

 

 

 

 

 

 

 

 

III. RESULTS AND DISCUSSION 

Table 1 shows processing in 3 blocks and table2 

computes 7 lines serially. The results obtained by this 

method clearly confirmed that a reasonable amount of 

speed (51%) is gained when the block size is increased as 

shown in table 3 and table 4. In either case of table 3 and 

table 4 (when block size = 3), we gained more  

acceleration than when block size =2. The final result with  

block size =3 is compared with [14] when block size = 2,  

this shows that acceleration is achieved with increment in  

block size.  

IV. CONCLUSION 

In this paper we presented acceleration of SWA using 

Recursive Variable Expansion and better acceleration is 

achieved when the block size is increased. Our result is 

compared with other researcher and we concluded that block 

size determines acceleration in the algorithm of 

Smith-Waterman. 
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