Study Of Methods For Preventing Selective Jamming Attacks

Mr. Ganesh R. Patil
PG Student, Dept. of E & TC Engg.
ARMIET College Of Engineering,
Asangaon, Mumbai, INDIA

Prof. Prashant S. Wankhade
Assistant Professor, Dept. of Electronics Engg.
Datta Meghe College Of Engineering,
Airoli, Navi Mumbai, INDIA

Abstract—The wireless networks are more sensitive to the Denial-of-Service (DoS) attacks. The existing system is based on Spread Spectrum (SS). This technique mainly focuses on an external threat model. In wireless network the communications between nodes take place through broadcast communication. That is why, if an attacker present within the network can easily eavesdrop the message sent by any node. The performance of the proposed scheme is to be evaluated through a series of simulations with the ns-2 network simulator.

Keywords—Jammer, Nodes

I. INTRODUCTION

The network consists of a collection of nodes connected via wireless links. Nodes may communicate directly if they are within communication range, or indirectly multiple hops. Nodes communicate both in unicast mode and broadcast mode. Communication can be either unencrypted or encrypted. For encrypted broadcast communications, symmetric keys are shared among all intended receivers. These keys are established using preshared pairwise keys or asymmetric cryptography. Conventional anti-jamming techniques rely extensively on spread-spectrum (SS) communications or some form of jamming evasion (e.g., slow frequency hopping, or spatial retreats). SS techniques provide bit-level protection by spreading bits according to a secret pseudo-noise (PN) code, known only to the communicating parties. These methods can only protect wireless transmissions under the external threat model.

We illustrate the impact of selective jamming attacks on the network performance. We used OPNET Modeler 14.5 to implement selective jamming attacks in two multihop wireless network scenarios. In the first scenario, the attacker targeted a TCP connection established over a multihop wireless route. In the second scenario, the jammer targeted network-layer control messages transmitted during the route establishment process.

II. EXISTING SYSTEM

Jamming attacks are much harder to counter and more security problems. They have been shown to actualize severe Denial-of-Service (DoS) attacks against wireless networks. In the simplest form of jamming, the adversary interferes with the reception of messages by transmitting a continuous jamming signal, or several short jamming pulses jamming attacks have been considered under an external threat model, in which the jammer is not part of the network. Under this model, jamming strategies include the continuous or random transmission of high power interference signals.
III. PROPOSED SYSTEM

In this research paper, we address the problem of jamming under an internal threat model. We consider a sophisticated adversary who is aware of network secrets and the implementation details of network protocols at any layer in the network stack. The adversary exploits his internal knowledge for launching selective jamming attacks in which specific messages of “high importance” are targeted. For example, a jammer can target router request/route-reply messages at the routing layer to prevent route discovery, or target TCP acknowledgments in a TCP session to severely degrade the throughput of an end-to-end flow. To launch selective jamming attacks, the adversary must be capable of implementing a “classify-then-jam” strategy before the completion of a wireless transmission. Such strategy can be actualized either by classifying transmitted packets using protocol semantics, or by decoding packets on the fly. In the latter method, the jammer may decode the first few bits of a packet for recovering useful packet identifiers such as packet type, source and destination address. After classification, the adversary must induce a sufficient number of bit errors so that the packet cannot be recovered at the receiver [14]. Selective jamming requires an intimate knowledge of the physical (PHY) layer, as well as of the specifics of upper layers.

IV. MODULES

A. NETWORK MODULES

We address the problem of preventing the jamming node from classifying m in real time, thus mitigating J’s ability to perform selective jamming. The network consists of a collection of nodes connected via wireless links. Nodes may communicate directly if they are within communication range, or indirectly via multiple hops. Nodes communicate both in Unicast mode and broadcast mode. Communications can be either unencrypted or encrypted. For encrypted broadcast communications, symmetric keys are shared among all intended receivers. These keys are established using pre shared pair wise keys or asymmetric cryptography.

B. REAL TIME CLASSIFICATION

Consider the generic communication system depicted in Figure 4. At the PHY layer, a packet m is encoded, interleaved, and modulated before it is transmitted over the wireless channel. At the receiver, the signal is demodulated, de-interleaved, and decoded, to recover the original packet m.

![Diagram](Fig 1)

Moreover, even if the encryption key of a hiding scheme were to remain secret, the static portions of a transmitted packet could potentially lead to packet classification. This is because for computationally-efficient encryption methods such as block encryption, the encryption of a prefix plaintext with the same key yields a static cipher text prefix. Hence, an adversary who is aware of the underlying protocol specifics (structure of the frame) can use the static cipher text portions of a transmitted packet to classify it.
V. PERFORMANCE EVALUATION

We simulated the energy efficient localization technique on Network Simulator (version 2) widely known as NS2 [11], a scalable discrete-event driven simulation tool. Building high performance WSN network systems requires an understanding of the behavior of sensor network and what makes them fast or slow. In addition to the performance analysis, we have also evaluated the proposed technique in measuring, evaluating, and understanding system performance. The final but most important step in our experiment is to analyze the output from the simulation. After the simulation we obtain the trace file which contains the packet dump from the simulation.

![Fig 1 Drop vs Time](image1)

![Fig 2 Throughput vs Time](image2)

![Fig 3 Packet Delivery Ratio vs Time](image3)
V. CONCLUSION

After simulating the source and destination formation file on Network Simulator (version 2.32) widely known as NS2, a scalable discrete-event driven simulation tool.

Building high performance WSN network systems requires an understanding of the behavior of sensor network and what makes them fast or slow. In addition to the performance analysis, we have also evaluated the proposed technique in measuring, evaluating, and understanding system performance. The final but most important step in our experiment is to analyze the output from the simulation. After the simulation we obtain animation which shows the movement of nodes along with the snake type dynamic movement and various node points. With the help of that we will identify the location of all nodes finally the location details file generated which contains the Source, Destination, SX-Pos, SY-Pos, Distance(d).

Thus we conclude that the different methods of selective jamming attacks at source and destination nodes were studied and verified the desired output.

REFERENCES