
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 4 Issue 6, June 2015

2787
ISSN: 2278 – 1323 All Rights Reserved © 2015 IJARCET

Database Technology (Nosql)

 Rupesh suresh vedante
*
 Ashwini Sampat Salunkhe

 Mumbai university Mumbai university

Abstract— NoSQL databases have gained popularity in the

recent years and have been successful in many production

systems Motivated by requirements of Web 2.0 applications,

a plethora of non-relational databases raised in recent

years. Since it is very difficult to choose a suitable database

for a specific use case, this paper evaluates the underlying

techniques of NoSQL databases considering their

applicability for certain requirements. These systems are

compared by their data models, query possibilities,

concurrency controls, partitioning and replication

opportunities.

Keywords— Include at least 5 keywords or phrases

I. I INTRODUCTION
The current NoSQL trend is intended by applications

stemming mostly of the Web 2.0 domain. Number of these
applications has storage necessities that exceed capacities and
prospects of relational databases.

In the past SQL databases were used for nearly each
storage problem, even if a data model did not match the
relational model well. The object-relational impediment
mismatch is one example, the transformation of graphs into
tables another one for using a data model during wrong
approach. These advantages to an increasing complexity by
using expensive mapping frameworks and
sophisticated algorithms. Even if a data model can simply be
coated by the relational one, the large feature set offered by
SQL databases is an unneeded overhead for straightforward
tasks like logging. The strict relative schema is often a burden
for internet applications like blogs that include many
alternative varieties of attributes. Text, comments, pictures,
videos, source code and other information have to be stored
within multiple tables. Since such internet applications are
unit terribly agile, underlying databases got to be
versatile still so as to support straightforward schema
analysis. Adding or removing a feature to a blog is not
possible without system inaccessibility if an on-line
database is getting used.

The increasing quantity of information in the web is a

problem which has to be considered by successful web pages

like the ones of Facebook, Amazon and Google. Besides

coping with tera- and peta bytes of

information, large browse and write requests have to be

compelled to be responded with none noticeable latency. So

as to contend with these needs, these corporations maintain

clusters with thousands of trade goods hardware machines.

Due to their normalized information model and their full

ACID support, relational databases are not appropriate in this

domain, as a result of joins and locks influence

performance in distributed systems
negatively. Additionally to high performance,

high handiness could be an elementary demand of the

many corporations. Amazon guarantees for its services

possibility of a minimum of 99.9% throughout a year [1].

Therefore, databases should be simply replicable and have to

provide an integrated failover mechanism to share with node

or datacentre failures. They also must be able to balance read

requests on multiple slaves to contend with access peaks

which can exceed the capacity of a one server. Since

replication techniques offered by relational databases are

restricted and these databases are generally supported

consistency rather than possibility, these needs will only be

achieved with extra effort and high experience [1]. Due to

these needs, several corporation and organizations developed
own storage systems, that are currently classified as NoSQL

databases. Since each store is specialized on the precise wants

of their principals, there is no cure on the market covering all

of the higher than mentioned needs. Therefore, it is very

terribly to pick out one database out of the embarrassment of

systems that is the most fitted for an exact use case.

Even if NoSQL databases have already been introduced

and compared within the past [2] [3] [4] [5], no use case

oriented survey is available. Since single options of bound

databases are changing on a weekly basis, an evaluation of

the various option of certain stores is superannuated at the
instant it is revealed. Therefore, it's necessary to

contemplate the impact of the underlying techniques on

specific use cases so as to produce a sturdy summary. This

paper highlights the foremost vital criteria for a database

selection, introduces the underlying techniques and compares

a wider vary of open source NoSQL databases as well as

graph databases, too.

In order to guage the underlying techniques of
those systems, the foremost vital options for
resolution the higher than mentioned needs have to be
compelled to be classified. Since the relational data model is
taken into account as not appropriate for certain use cases,
chapter two can examine structure and suppleness of various
data models offered by NoSQL systems. Afterwards, query

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 4 Issue 6, June 2015

2788
ISSN: 2278 – 1323 All Rights Reserved © 2015 IJARCET

prospects of those stores and their impact on system
complexity will be analysed in chapter three. In order to
contend with several parallel browse and write requests,
some stores loose concurrency restrictions. Completely
different method of these systems for handling concurrent
requests is inspected in chapter four. Since immense amounts
of information and high performance serving exceed the
capacities of single machines, partitioning strategies of
NoSQL databases are analysed in chapter five. Replication
techniques and their effects on handiness and consistency are
examined in chapter six.

II. DATA MODEL

Mostly NoSQL databases dissent from relational databases in
their data model. These systems are classified in this during this
analysis into 4 groups.

A. Key Value Stores

Key value stores are similar to maps or dictionaries

wherever information is addressed by a novel key. Since

values are uninterpreted byte arrays, which are utterly

opaque to the system, keys are the only way to retrieve
stored data. Values are isolated and freelance from one

another wherefore relationships should be handled in

application logic. Due to this terribly straightforward

simple data structure, key value stores are utterly schema

free. New values of any kind can be added at runtime

without conflicting any other keep information and

without influencing system handiness. The grouping of

key value pairs into assortment is the only offered

possibility to add some kind of structure to the data

model. Key value stores are useful for simple operations,

which are based on key attributes only. In order to speed

up a user specific rendered webpage, components of this
page can be calculated before and served quickly and

easily out of the store by user IDs when required. Since

most key value stores hold their dataset in memory, they

are oftentimes used for caching of longer intensive SQL

queries.

B. Document Stores

Document Stores databases are those NoSQL databases
which use records as documents. This type of database store

unstructured (text) or semi-structured (XML) documents

which are usually hierarchal in nature. Here each document

consists of a set of keys and values which are almost same as
there in the Key Value databases. Each database residing in

the document stores points to its fields using pointers as it

uses the technique of hashing. Document Stores Databases
are schema free and are not fixed in nature. Databases point

to its value using some unique key residing in its database.

This consists of an array of databases .Document stores offer

multi attribute lookups on records which may have complete

different kinds of key value pairs. Therefore, these systems

are very convenient in data integration and schema migration
tasks. Most popular use cases are real time analytics, logging

and the storage layer of small and flexible websites like

blogs. The most prominent document stores are CouchDB

[9], MongoDB [10] and Riak [11]. Riak offers links, which
can be used to model relationships between documents.

C. Graph Databases

A graph database, also called a graph-oriented database, is

a type of NoSQL database that uses graph theory to store,
map and query relationships.

Graph theory is the study of points and lines. In particular, it

involves the ways in which sets of points, called vertices, can

be connected by lines or arcs, called edges. Graphs in this

context differ from the more familiar coordinate plots that

portray mathematical relations and functions. Graphs are

classified according to their complexity, the number of edges

allowed between any two vertices, and whether or not

directions (for example, up or down) are assigned to edges.

Various sets of rules result in specific properties that can be

stated as theorems. Graph theory has proven useful in the

design of integrated circuits (IC s) for computers and other
electronic devices. These components, more often

called chip s, contain complex, layered microcircuits that can

be represented as sets of points interconnected by lines or

arcs. Using graph theory, engineers develop chips with

maximum component density and minimum total

interconnecting conductor length. This is important for

optimizing processing speed and electrical efficiency. Twitter

stores many relationships between people in order to provide

their tweet following service. These one-way relationships are

handled within their own graph database Flock DB [20]

which is optimized for very large adjacency lists, fast reads
and writes.

Use cases for graph databases are location based services,

knowledge representation and path finding problems raised in

navigation systems, recommendation systems and all other

use cases which involve complex relationships. Property

graph databases are more suitable for large relationships over
many nodes, whereas RDF is used for certain details in a

graph. Flock DB is suitable for handling simple I-hop-

neighbor relationships with huge scaling requirements.

III. QUERY POSSIBILITIES

The main idea behind basic NoSQL databases is to focus

solely on the storage of arbitrary values indexed by keys and

let the application worry about the business logic and entity

relationships. This allows NoSQL databases to be

significantly less complex and more flexible than traditional

RDS databases at the expense of moving complexity, such as

http://searchdatamanagement.techtarget.com/definition/NoSQL-Not-Only-SQL
http://whatis.techtarget.com/definition/graph-theory
http://searchcio-midmarket.techtarget.com/definition/integrated-circuit
http://searchcio-midmarket.techtarget.com/definition/chip

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 4 Issue 6, June 2015

2789
ISSN: 2278 – 1323 All Rights Reserved © 2015 IJARCET

transaction systems and schema management, into the

application itself. While this might seem like a step back

from RDS systems where this functionality is offered by

default, the big alure for NoSQL systems is the performance

and scalability benefits that such simplification entails,

especially for those operations. Due to their simple data

model, APIs of key value stores provide key based put, get

and delete operations only. Any query language would be an

unnecessary overhead for these stores. If additional query

functionalities are required, they have to be implemented on

the application layer which can quickly lead to much more

system complexity and performance penalties. Therefore, key

value stores should not be used, if more complex queries or

queries on values are required. Very useful in the domain of

web applications are REST interfaces. Heterogeneous clients

can directly interact with the store in a uniform way, while

requests can be load balanced and results can be cached by

proxies. Membase is the only key value store, which offers a

REST API natively.

NoSQL solutions should provide a rich set of possibilities for

locking granularity. Locking should be possible but access to

snapshots while data is being written, providing consistent

views at all times regardless of concurrent write activity,

should be allowed. Locking at all levels, such as document,

should be supported and applied according to context.

Column family stores only provide range queries and some

operations like "in" , "and/or" and regular expression, if they

are applied on row keys or indexed values. Even if every

column family store offers a SQL like query language in

order to provide a more convenient user interaction, only row

keys and indexed values can be considered in where-clauses

as well. Since these languages are specialized on the specific

features of their stores, there is no common query language

for column family stores available yet.

As clusters of document and column family stores are able

to store huge amounts of structured data, queries can get very

inefficient if a single machine has to process the required

data.
Therefore, all document and column family stores

provide graph databases can be queried in two different

ways. When relationships are the important aspect to the data,

graph databases shine. The data does not have to be “big” for

the graph database to provide significant performance

benefits over other database technologies. The data itself can
be homogenous, such as all people and their relationships as

in a “social graph” or heterogeneous. Fast checks of how

many degrees nodes are from each other or list pulls of all

those a certain number of degrees apart are workloads that

would be slow, nested table self joins in relational databases

and probably worse in the other NoSQL data models. Graph

Databases yield very consistent execution times that are not

dependent on the number of nodes in the graph. It might be

tempting to select from these solutions without giving much

“enterprise” thought to the matter. However, an organization

that sees the value in a NoSQL database for one application

could soon need or use several NoSQL implementations. You

could adopt multiple NoSQL databases to satisfy different
requirements (e.g. a Document Database and a Key-Value

Store). Or you can use a NoSQL database that functions as

both a competent Key-Value Store and a competent

Document Store. It may also be advantageous to have skills

around a single multi-purpose NoSQL database.

In this paper, we aim to search for the answer of the question

how to process web data quickly. Thus, we propose a method

to exploit a NoSQL database, specifically MongoDB, to store

and query RDF. MongoDB is chosen because it is one of

widely used NoSQL databases. The system first invokes

NoSQL API to retrieve MongoDB data in JSON format.

Then, the JSON parser module converts JSON data to RDF
data. We evaluate our design and implementation by using

the Berlin SPARQL Benchmark, which is one of the most

widely accepted benchmarks for comparing the performance

of three RDF storage systems which include Apache Jena

TDB (native RDF store), MySQL (relational database),

And MongoDB (NoSQL database).

IV. CONCURRENCY CONTROL

Several users have access to an information supply in
parallel; ways for avoiding inconsistency supported

conflicting operations square measure necessary. Ancient

databases use hopeless consistency ways with exclusive
access on a dataset. These ways square measure appropriate,

if prices for protection square measure low and datasets aren't

blocked for a protracted time. Since locks square measure

terribly expensive in information clusters that square measure
distributed over giant distances and plenty of internet

applications got to support terribly high browse request rates,

hopeless consistency ways will cause large performance loss.

Multiversion concurrency management (MVCC) relaxes

strict consistency in favour of performance. Simultaneous

access isn't managed with locks however by organization of
the many unmodifiable written account ordered versions.

Since datasets aren't reserved for exclusive access, browse

requests will be handled by providing the most recent version
of a worth, whereas a simultaneous method accomplishes

write operations on identical dataset in parallel. So as to deal

with 2 or a lot of conflicting write operations, each method

stores, further to the new worth, a link to the version the
method browse before.

Therefore, algorithms on information or shopper facet

have the chance to resolve conflicting values by completely
different ways. HBase, Hyptertable, Bigdata and GraphDB

use the storage of various versions not just for conflict

breakdown however additionally for providing versioning.

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 4 Issue 6, June 2015

2790
ISSN: 2278 – 1323 All Rights Reserved © 2015 IJARCET

Besides consistency cut backs MVCC additionally causes

higher space for storing needs, as a result of multiple versions
of 1 worth square measure hold on in parallel. Further to an

employee, that deletes not used versions, conflict breakdown

algorithms square measure required to agitate inconsistencies.

Therefore, MVCC causes higher system quality.
In order to support transactions while not reserving

multiple datasets for exclusive access, optimistic protection is

provided by several stores. Before modified knowledge is
committed, every dealing checks, whether or not another

transactions created any conflicting modifications to identical

datasets. Just in case of conflicts, the dealing is rolled back.

This idea functions well, once updates square measure dead
seldom and possibilities for conflicting transactions square

measure low. During this case, checking and rolling back is

cheaper than protection datasets for exclusive access.

V. PARTITIONING

At the time huge amounts of data and very high read and

write request rates exceed the capacity of one server,

databases have to be partitioned across database clusters. Due

to their normalized data model and their ACID guarantees,

relational databases do not scale horizontally. Doubling the

amount of relational database server does not double the

performance of the cluster. Due to that lack, big web 2.0

companies like Google, Facebook and Amazon developed

their own so called web-scale databases which are designed to

scale horizontally and therefore satisfy the very high

requirements on performance and capacity of these

companies.

NoSQL databases differ in their way they distribute data

on multiple machines. Since data models of key value stores,

document stores and column family stores are key oriented,

the two common partition strategies are based on keys, too.

The first strategy distributes datasets by the range of their

keys. A routing server splits the whole keyset into blocks and

allocates these blocks to different nodes. Afterwards, one

node is responsible for storage and request handling of his

specific key ranges. In order to find a certain key, clients

have to contact the routing server for getting the partition

table.

This strategy has its advantages in handling range queries

very efficiently, because neighbour keys are stored with high

percentile on the same server. Since the routing server is

responsible for load balancing, key range allocation and

partition block advices, the availability of the whole cluster

depends on the failure proneness of that single server.

Therefore, this server is oftentimes replicated to multiple

machines. Higher availability and much simpler cluster

architecture can be achieved with the second distribution

strategy called consistent hashing [27].

 In this shared nothing architecture, there exists no single

point of failure. In contrast to range based partitioning, keys

are distributed by using hash functions. Since every server is

responsible for a certain hash region, addresses of certain

keys within the cluster can be calculated very fast.

Good hash functions distribute keys intuitively even

wherefore an additional load balancer is not required.

Consistent hashing also scores by dynamic cluster resizing. In

contrast to other approaches, addition or removal of nodes

only affects a small subset of all machines in the cluster. This

simple architecture leads to performance penalties on range

queries caused by high network load since neighboured keys

are distributed randomly across the cluster.

All aforementioned key value stores and the document

stores Riak and CouchDB are based on consistent hashing,

whereas MongoDB documents are partitioned by the range of

their ID. In contrast to key value and document stores,

column family stores can be partitioned vertically, too.

Columns of the same column family are stored on the same

server in order to increase attribute range query performance.

Cassandra datasets are partitioned horizontally by consistent

hashing, whereas the BigTable clones HBase and Hypertable

use range based partitioning. Since column family data

models can be partitioned more efficiently, these databases

are more suitable for huge datasets than document stores.

In contrast to key value based NoSQL stores, where

datasets can easily be partitioned, splitting a graph is not

straightforward at all. Graph information is not gained by

simple key lookups but by analysing relationships between

entities. On the one hand, nodes should be distributed on

many servers evenly, on the other hand, heavily linked nodes

should not be distributed over large distances, since

traversals would cause huge performance penalty due to

heavy network load. Therefore, one has to trade between

these two limitations. Graph algorithms can help identifying

hotspots of strongly connected nodes in the graph schema.

These hotspots can be stored on one machine afterwards.

Since graphs can rapidly mutate, graph partitioning is not

possible without domain specific knowledge and many

complex algorithms. Due to these problems, Sesame, Ne04j

and Graph DB do not offer any partitioning opportunities. In

contrast, FlockDB is designed for horizontal scalability.

Since FlockDB does not support multi-hop graph traversal, a

higher network load is no problem.

Since distributed systems increase system complexity

massively, partitioning should be avoided if it is not

absolutely necessary. Systems which do mostly struggle

with high-read-request-rates can scale this workload more

easily through replication.

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 4 Issue 6, June 2015

2791
ISSN: 2278 – 1323 All Rights Reserved © 2015 IJARCET

VI. REPLICATION AND CONSISTENCY

Data replication is that the idea of getting knowledge, among

a system, be geo-distributed, ideally through a non-

interactive, reliable method. In ancient RDBMS databases,

implementing any style of replication may be a struggle as a

result of these systems weren't developed with horizontal

scaling in mind. Instead, these systems are protected via a

semi-manual method wherever live recovery wouldn’t be a

lot of a difficulty. Even with live recovery not being a lot of

a difficulty, it downplays the complexness of this setup. Once

managing today’s globally distributed knowledge, the

previous collocated replication ideas won't serve once

enforced at geographic scale.

Today’s infrastructure needs systems that natively support

active and period replication, achieved through clear and easy

configurations. The power to dictate wherever and the way

your knowledge is replicated via simply tunable settings,

besides providing users with simply understood ideas is what

modern-day NoSQL databases attempt to supply.

To achieve high availability and durability, Dynamo

replicates its data on multiple hosts. Each data item is

replicated at N hosts, where N is a parameter configured

“per-instance”. Each key, k, is assigned to a coordinator node

which is in charge of the replication of the data items that fall

within its range.

Dynamo is designed to be an eventually consistent system.

This means that update operations return before all replica

nodes have received and applied the update. Subsequent

read operations therefore may return different versions from

different replica nodes. The update propagation time

between replicas is limited in Amazon’s platform if no

errors are present; under certain failure scenarios however

“updates may not arrive at all replicas for an extend period

of time”.

Such inconsistencies need to be taken into consideration by
applications.

Systems that area unit eventually consistent so as to
extend accessibility area unit Redis, CouchDB and Ne04j.
Considering that CouchDB and Ne04j conjointly supply
master-master replication, these systems area unit
appropriate for offline support required e.g. in mobile
applications. Voldemort, Riak, MongoDB, prophetess and
FlockDB supply optimistic replication, wherefore they will
be utilized in any context. Since Membase, HBase,
Hypertable, herb and GraphDB don't use replication for load
leveling, these stores supply full consistency. BigData is that
the solely store, that supports full consistency and replication
natively.

VII. CONCLUSION

"Use the proper tool for the job" is that the propagated
ideology of the NoSQL community, as a result of
each NoSQL information is specialised on sure use cases.
Since there's no analysis obtainable that answers the question
"which tool is that the right tool for the job?” blessings and
downsides of those stores were compared during this paper.
prons and corns of these stores were compared in this paper.

First of all, developers ought to assess their information so

as to spot an acceptable information model to

avoid gratuitous complexness because of transformation or

mapping tasks. Queries that ought to be supported by

the information ought to be thought of at an equivalent time,

as a result of these necessities massively influence the

planning of the information model. Since no common source

language is out there, each store differs in its

supported question feature set. Afterwards, developers ought

to trade between high performance through partitioning and
cargo balanced duplicate servers, high handiness supported

by asynchronous replication and strict consistency. If

partitioning is needed, the choice of

various partition methods depends on the supported queries

and cluster complexness. Beside these completely

different necessities, conjointly sturdiness mechanism,

community support and helpful options like versioning

influence the information choice. In general,

key price stores ought to be used for in no time and

straightforward operations, document stores provide a

versatile information model with nice question potentialities,

column family stores area unit appropriate for terribly
massive datasets that ought to be scaled at massive size, and

graph databases ought to be employed

in domains, wherever entities area unit as necessary because

the relationships between them.

REFERENCES

[1] G. DeCandia, et al., "Dynamo: amazon's highly available key-value

store," in SOSP '07 Proceedings of twenty-first ACM SIGOPS, New

York, USA, 2007, pp. 205-220.
[2] K. Orend, "Analysis and Classification of NoSQL Databases and

Evaluation of their Ability to Replace an Object-relational Persistence

Layer," Master Thesis, Technical University of Munich, Munich,
2010.

[3] R. Cattell, "Scalable SQL and NoSQL Data Stores," ACM SIGMOD
Record, vol. 39, December 2010.

[4] C. Strauch, "NoSQL Databases" unpublished.
[5] M. Adam, "The NoSQL Ecosystem," in The Architecture of Open Source

Applications, A. Brown and G. Wilson, Eds., lulu.com, 2011, pp.

185-204.
[6] "Project Voldemort." Internet: http://project-voldemort.com,

[30.09.2011]
[7] "Redis." Internet: http://redis.io, [30.09.2011]
[8] "Membase." Internet: http://couchbase.orgjmembase, [30.09.2011]
[9] "CouchDB." Internet: http://couchdb.apache.org, [30.09.2011]

[10] "MongoDB." Internet: http://mongodb.org, [30.09.2011]

[11] "Riak." Internet: http://basho.com/Riak.html, [30.09.2011]

