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Abstract— The analysis of human gait has become a popular 

and dynamic research on computer vision. An important 

application of gait analysis is to early detect the gait 

abnormalities, which may be caused by some diseases. In this 

paper, we present a video-based method to recognize common 

pathological gaits of the elderly such as ataxic, hemiplegic, 

limping, neuropathic, and Parkinson. There are three main 

processing steps in the system. In the first step, from each 

frame of the side view gait video sequence, we first separate the 

walking person from the background using adaptive 

background Gaussian Mixture Model. In the second step, we 

convert the extracted object into a seven-dimensional feature 

vector based on Hu’s moments. In the final step, we analyze 

those extracted features to recognize different abnormal gaits 

using Cyclic Hidden Markov Model (CHMM). The Cyclic 

HMMs are trained with different values of parameters in 

order to achieve the best reliable recognition model for each 

disease. Experimental results on simulated abnormal gait 

database indicate the good performance of the proposed 

method in terms of low complexity and high recognition rate 

(about 83% for recognition and 93% for detection task).  

 

Index Terms— Gait analysis, Pathological gait recognition, 

Gaussian Mixture Model (GMM), Hu’s moments, Cyclic 

Hidden Markov Model (CHMM).  

 

I. INTRODUCTION 

The development of science and technology results in the 

persistent increasing of aging populations, emerging a series 

of healthcare problems such as chronic diseases on arthritis, 

cardiovascular, or neurodegenerative diseases. A number of 

researches conclude that the loss of the ability to walk 

properly can be a result from a significant health problem, 

due to the fact that pain, injury, paralysis or tissue damage 

can alter normal gait [1]. In addition, mental problems can 

also lead to some gait problems such as gait slowing, which 

might be a predictor of incident dementia [2]. Thus, a 

dominant goal of gait analysis is to early detect the gait 

abnormalities, which may be affected by certain diseases, in 

order to mitigate their severe consequences. 

Pathological gait recognition approaches can be 

categorized into two main techniques, which are 
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sensor-based and video-based, depending on the way the data 

is collected. With today’s easy installation, operation and 

maintenance of a video camera system, it results in the 

widespread proliferation of video-based method, which 

concerns the automatic and surreptitious interpretation of 

human gait from image sequences. In contrast, the 

sensor-based method is performed in expensive laboratory, 

requiring a high-structured experimental environment 

accompanied by trained personnel and is intrinsic 

intrusiveness. 

In recent years, there have been a series of research projects 

all over the world on video-based solutions for pathological 

gait recognition. For example, the study by Liao et al. [3] 

analyzes the walking posture from side-view and front-view 

videos. Four features extracted from the segmented silhouette 

of walking human are bodyline, neckline, center of gravity 

(COG) and base width. Tilting angles associated with body 

and necklines and their periodic variation are adopted to 

evaluate upper body posture. The COG and gait width 

features are used to evaluate the posture condition of lower 

body parts. The system achieves acceptable performance with 

low cost and high convenience.  The paper by Stone and 

Skubic [4] presents initial results of continuous monitoring 

the gait of elderly residents in an independent living facility, 

using the depth camera Microsoft Kinect. Instead of using 

the Kinect skeletal tracking, they process the raw disparity 

values from the Kinect depth streams to achieve further 

distance working range (up to 8 meters) and more accurate 

gait measurement. Paolo et al. [5] propose a video-based 

portable tool for clinical gait analysis by processing a video 

stream by tracking different markers placed in five specified 

points of the subject’s leg. To deal with occlusions, they 

apply Kalman filter in conjunction with Mahalanobis 

distance for correcting and interpolating the estimation. 

Experimental results show that the system is able to 

reconstruct marker position and leg kinematics even if 

occlusions occur. 

Most of the existing video-based pathological gait 

detection systems use either multiple cameras (e.g., two 

cameras) or depth camera or combine camera(s) and 

markers. In this paper, we propose a simpler video-based 

system for recognition of popular diseases which result in 

gait abnormality in elderly. The proposed system uses only 

one conventional camera to record the movements of the 

subject in side view. Unlike the other method [3, 5], in our 

system, the gait disorders can be detected without tracking or  

recognizing limbs or body parts. In addition, the 
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quasi-periodicity property of human walking increases the 

difficulty level of the recognition task, due to the fact that the 

motion from one cycle to the next is not perfectly repeated. 

By using the variation of Hidden Markov Model (HMM), 

which is Cyclic HMM, the characteristics of quasi-periodic 

human motions can be effectively captured. Finally, 

researches on this branch have almost focused their attention 

on the problems such as detecting unusual gait [6] or 

estimating the gait parameters [3, 4]. In this study, the gait 

analysis is considered from a different aspect. It can be used 

as a means to deduce certain disease related to gait disorder 

of people.  

The rest of the paper is organized as follow: in Section II, 

we generally describe the overview of the proposed 

methodology. The processing steps in the system are then 

presented in Section III with more details. Experimental 

results are shown in Section IV, followed by conclusion in 

Section V. 

II. OVERVIEW OF THE PATHOLOGICAL GAIT 

Human gait analysis can be simply described as the study 

of human locomotion by measuring body movements, body 

mechanics, and the activities of muscles. Actually people can 

move in many ways such as running, hopping, skipping, or 

even crawling; however, like most gait analysis researches, 

in this study, we only attend to walking gait. Section II begins 

by presenting the specific parameters associated with normal 

gait, so we can understand the abnormality. After that, the 

diseases that are considered in our work are carefully 

described.   

A. Gait parameters 

Basically, there are three main gait parameters: 

1) Step length is the distance from the heel of one foot to 

the next heel of the opposite foot, as in Fig. 1. Normally, step 

length tends to decrease with age, pain and disease. A 

healthy person has the same step lengths for both legs, 

resulting in the smooth rhythm of walking [7]. The step 

length is closely related to the gait cycle, which is the total 

length of two continuous steps. There are two major phases in 

a gait cycle, i.e., stance phase and swing phase. Stance phase 

is when the foot is on the ground and swing phase is when the 

foot is on the air swinging to forward. Most problems related 

to lower limbs could be observed clearly in the stance phase. 

2) Base (or step width) is the distance between two feet 

during walking [7] as in Fig. 1. Base should be shoulder 

length or a little less and should remain relatively stable from 

step to step. Normally, the wider base width is due to some 

pathology, which decrease the ataxic balance. The smaller or 

the crossover base width in some cases could be a warning 

sign of an imminent fall or a symptom of gait disorders.  

 
Figure 1.  Illustration of step length and base width. 

3) Gait speed is the distance a person can travel in a 

certain amount of time. There are some factors, which affect 

gait speed, such as age, sex, step length, and health status, 

etc. In addition, gait speed is significantly influenced by 

health condition.   

B. Common pathological gait disorders in the elderly 

Normally, walking gait declines with non-pathological 

aging, involving stooped posture, reduced arm swing, 

reduced step length, reduced gait speed and a tendency 

towards a flat foot strike. However, musculoskeletal and 

neurological diseases can attribute to this normal decline, 

causing the reduced quality of life and the increased risk of 

fall [1].  

In this paper, we focus on recognizing common gait 

disorders in the elderly. They are ataxic, hemiplegic, 

limping, neuropathic, and Parkinson. The description of 

such gaits is in the following, 

1)   Ataxic gait is most commonly seen in cerebellar 

disease. The gait of an intoxicated person also resembles 

ataxic gait. This gait can be either observed in severe 

reduction proprioception. The patient’s gait is usually wide 

or variable base, reduced or variable step length, loosed 

balance, irregular lurching steps, and abducted arms [1]. 

2)   Hemiplegic gait is the typical gait of patients with 

upper motor neuron lesion. This gait is most commonly seen 

in stroke. The patient has unilateral weakness with the upper 

extremity in flexion and lower extremity in extension. When 

walking, the patient holds his arm to one side and drags his 

affected leg in a semicircle, due to the weakness of distal 

muscles and extensor hypertonia in lower limb [1]. 

3)   Limping gait has many causes. These include injuries 

such as muscle strains, injured ligaments, etc., infections 

such as septic arthritis, osteomyelitis, or developmental 

problems such as muscular dystrophy, different leg lengths, 

etc. The patient is walking irregularly with hobbling, pain or 

discomfort. They usually put uneven pressure on two foot. 

4)   Neuropathic gait is most often seen in peripheral 

nerve disease. The cause of this gait is the weakness of foot 

dorsiflexion.  The patient has to walk with the high lifted leg 

so that the toes do not drag on the floor [1]. 

5)   Parkinson gait is the most common abnormal gait in 

the elderly. This gait is seen in Parkinson patient or any other 

condition causing Parkinsonism, such as side effect from 

drugs. This gait is characterized by a small step length, 

stooped posture, slow gait speed, reduced arm swing, lack of 

pivot during turning and poor balance [1]. 

III. PROPOSED SYSTEM 

Our designed system aims to observe the elderly walking 

in the indoor environment with almost static background 

and/or corridor with acceptable lighting condition for gait 

abnormality recognition. In order to provide video stream for 

the entire system, we install a single cheap conventional 

camera in the suitable place so that we can capture the video 

of one person walking in side view and then transmit to the 

computer for gait analysis. 

The basic architecture of our system is shown in Fig. 2. 
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The system follows three stages of operations: object 

segmentation, feature extraction and pathological gait 

recognition. First, the human object is segmented 

frame-by-frame from the background of image by using the 

adaptive GMM; second, segmented object is converted into 

seven-dimensional feature vector based on Hu’s seven 

moments; and finally, specified pathological gait is identified 

among other defined pathological gaits by Cyclic HMM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.   Three basic processing steps of the proposed pathological gait 

recognition system. 

The details of three processing steps will be presented in 

the following, 

A. Human object segmentation 

Adaptive background GMM approach [8] is very common 

to distinguish walking human from the background.  

At time t, the value of pixel at (x0, y0) in frame is Xt. The 

sequence of each pixel, {X1, …, Xt}, is constructed by a 

Gaussian Mixture Model with K components. The 

probability of observing the current pixel value is calculated 

by, 

         p(Xt ) = wi,th(Xt,mi,t, Si,t )
i=1

K

å                                      

(1) 

where ωi,t is an estimated weight of the  ith Gaussian 

distribution at time t, η is the pdf of i
th

 Gaussian distribution,  

μi,t is the mean value of the ith Gaussian at time t, and Σi,t is 

the covariance matrix of the ith Gaussian at time t.  

Every new pixel value is checked against K existing 

Gaussian distributions, until a match (pixel value within 2.5 

standard deviations of a distribution) is found [8]. 

When none Gaussian is matched, Xt is marked as a 

foreground pixel and the least probable component is 

replaced by a distribution with the current value as its mean, 

an initial high variance, and a low weight parameter. 

As the parameters of the mixture model of each pixel 

change, the Gaussians are reordered by the value of ω/σ then 

the first BG distributions are chosen as the background 

model, where 

       BG = argminb wk >T
k=1

b

å
æ

è
ç

ö

ø
÷                                         

(2) 

where T is the minimum fraction of the background model.  

In this study, we use improved GMM for object 

segmentation [9]. This algorithm uses recursive equations to 

constantly update the parameters and to simultaneously 

select the appropriate number of Gaussian components for 

each pixel. 

After extracting the human object, some morphological 

operations such as closing and opening are implemented to 

smooth the boundary and fill the small holes to create proper 

silhouette images.  

Finally, in order to avoid the large size of image, we use 

detector window where its center is the centroid of the object 

blob to create a Region Of Interest (ROI) around the object 

and remove the pixels outside it. 

 The results of human object segmentation process are 

shown in Fig. 3. Here, a big hole in lower leg in silhouette 

(Fig. 3a) is filled after morphology process (Fig. 3c). 

 

 
                 (a)                                    (b)                                    (c) 

Figure 3.  (a) Original image, (b) Segmented silhouette by improved GMM, 

(c) Segmented silhouette after morpological operations with ROI. 

B. Feature extraction 

The silhouette image in each frame will be transformed 

into a reduced representation set of features. The chosen 

feature descriptor in this study is based on Hu’s seven 

moments, due to their advantageous characteristics in 

statistical describing geometric figures [10]. Specially, Hu’s 

moments can effectively describe the binary silhouettes, 

regardless of their size, location, and orientation in image 

frames.   

These moments are calculated based on two-dimensional 

moments: 

                mpq = x pyqòò r(x, y)dxdy                                  (3) 

where ρ(x,y) is the binary image: 

               r(x, y) =
1 if (x, y)Ï silhouette

0 if (x, y)Ï background

ì
í
î

                   (4) 

The above 2D moments can be made to be invariant to 

translation by central moments, which are defined as follows: 

                mpq = (x- x)p(y- y)qòò r(x, y)dxdy                   (5) 

where pixel point ),( yx  is the centroid of the binary image:  

                       x =
m10

m00

and y =
m01

m00

                                   (6) 

Next, we can make central moments to be scale invariance 

by normalization and get the normalized central moments as 

in the following: 

                            
1

2
00





qp

pq

pq




                                       (7) 

Finally, in order to obtain the features invariant to the 

rotation of image, based on normalized central moments, we 

calculate following seven Hu’s moments as in [10]: 
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(8) 

Since the values of Hu’s moments, especially from S2, are 

extremely small, we propose to take the logarithm of 

moments so that their values are larger to avoid possible 

unexpected errors when computing the so-closely small 

numbers. This was proven through experiments either: 

original Hu’s moments give the poor recognition rate. In our 

study, Hu’s moments can be negative somehow; hence, we 

have to calculate the logarithm of absolute of seven moments. 

Thus, the above proposed transform has mapped the 

so-closed Hu’s moments into the new space, where the 

different feature vector points keep apart large enough to be 

reliably processed. Fig. 4 is the binary image and its 

corresponding original and transformed Hu’s moments.  

 

Figure 4.   Original binary image and its seven corresponding orignal and 

transformed moments. 

C. Pathological gait recognition 

After being transferred to sequence of feature vectors from 

previous stages, video data need to be analyzed for 

pathological gait recognition. In our system, we employ 

HMM to achieve this goal. Intuitively, walking action exhibit 

quasi-periodicity, where the motion from one cycle to the 

next is not perfectly repeated and the number of cycles is not 

a predefined value. This motivates our use of Cyclic HMM 

(CHMM) [11] – a variation of left-to-right structure with a 

return transition from the ending state to the beginning state, 

so as to be able to model the walking actions with 

quasi-periodicity characteristics. 

There are two main types of HMM which are discrete 

HMM and continuous HMM. Four our implementation, we 

do not use discrete version to avoid the quantization 

distortion created by the vector quantization process when we 

build the codebook containing the observed symbols of the 

model.  

One limitation of HMMs is that the feature vector 

sequence (i.e., the sequence of observed symbols) is only well 

modeled if the parameters of HMMs are appropriate chosen. 

Unfortunately, to our best knowledge, there is still no 

systematic method to optimally choose the HMM parameters. 

Therefore, we have to conduct a number of experiments to 

achieve the best reliable models for our application. 

Fig. 5 is an example of continuous CHMM used in our 

system. 

The use of CHMM covers two phases, which are training 

and testing. The data used to feed CHMM is from self-built 

stimulated pathological gait videos. The whole database is 

divided into two sets for training and testing. 

1)   The training process is carried out by building six 

CHMMs (each model is to model one type of gait 

abnormality in the database) to optimize the corresponding 

state transition matrices As and observation probability 

distributions Bs. In the continuous case, B is given by the 

parameters of the probability density function (pdf) of the 

observation vector at time t given the state of the model. The 

Gaussian distribution is selected to represent these pdfs. The 

training process is performed by the Baum-Welch algorithm 

[12] to derive the maximum likelihood (ML) estimation of the 

model parameters λ = {A, B, π}. The training algorithm is 

run until convergence condition is satisfied. If it runs over 

10.000 times without convergence, it will be forced to stop. 

 

 
Figure 5.  Seven-state continuous CHMM. 

2) The testing process is the construction of a ML classifier 

as depicted in Fig. 6. Given a sequence of feature vectors 

from testing video data, we compute the likelihoods that the 

trained CHMMs generating this testing sequence. Finally, in 

the decision step, we select the CHMM that has the ML to be 

the corresponding class of testing gait.  

 

 

Figure 6.  ML classifier. 
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IV. SYSTEM EVALUATION  

The evaluation of the video analysis algorithm used in this 

system is performed through a self-built simulated 

normal/abnormal gait database. Two main experiments are 

done: in the first experiment, we do compare the discrete and 

continuous CHMM in recognizing the abnormal gaits. In the 

second experiment, we try to choose the appropriate CHMM 

parameters through several sub-experiments. Both 

experiments use the completely different training and testing 

data captured from different people. The performance of the 

system is measured by the recognition rate, using ten-fold 

cross validation rule.  

A. Self-built database 

Each of the ten volunteers is instructed to perform a set of 

predefined walking actions including normal walk, ataxic, 

hemiplegic, limping, neuropathic, and Parkinson as 

described in [1]. The volunteers have various genders, ages, 

weights, and heights.  Each type of gait is performed multiple 

times by multiple people in various speeds. Volunteers’ 

clothes and hairstyle are at their convenience. These help the 

database to be diverse and challenging.  

In total, we collect 56 ataxic, 85 hemiplegic, 93 limping, 

97 neuropathic, 97 Parkinson, and 101 normal walk videos. 

All videos are compressed in .avi format with the size of 

180x144, and recorded by a cheap conventional camera in a 

corridor under relatively good lighting conditions.  

Fig. 7 shows some images of pathological gaits in the 

database.  

 
 

Figure 7.  Image frames of gaits in the database (from the top row the the 

bottom: ataxic, hemiplegic, limping, neuropathic, Parkinson, and walk).  

B. Experiment 1 

In this experiment, we try to validate what was analyzed in 

Section III_C about quantization distortion discrete HMM by 

performing several experiments on both discrete and 

continuous HMM. All CHMMs used have the same number 

of hidden states. For discrete CHMM, the size of the 

codebook is 32, 64, and 128 in sequence. Table I is the total 

recognition result of this experiment with the codebook size 

of 128, showing that the continuous CHMM is always 

dominant. 

TABLE I.  RECOGNITION RATE OF DISCRETE VS. CONTINUOUS HMM 

 N = 7 N = 9 

Discrete HMM 74.23% 74.83% 

Continuous HMM 76.76% 79.33% 

C. Experiment 2 

In this experiment, in order to choose the proper CHMM 

parameters, we perform 9 sub-experiments with the number 

of hidden states within the range [3-11]. Table II presents the 

recognition rate measured in % through these 9 experiments.  

TABLE II.  RECOGNITION RATE (%) OF SYSTEM THROUGH  9 

EXPERIMENTS 

N Atax Hemi Limp Neur Park Walk Total 

3 65.5 49.3 87 52.1 99 78 71.82 

4 67.3 52.1 80.4 58.3 97.9 77 72.16 

5 65.5 55.1 82.6 56.2 97.9 81 73.05 

6 67.3 56.6 92.4 56.2 97.9 77 74.57 

7 67.3 52.1 95.7 62.5 99 84 76.77 

8 72.7 54.9 73.9 70.8 96.9 83 75.37 

9 74.5 62.9 83.7 69.8 99 85 79.15 

10 70.9 70.5 89.1 76 99 80 80.92 

11 76.4 73.1 87 72.9 99 72 80.07 

 

Based on the results of previous experiments, the numbers 

of states of six models are chosen differently so as to achieve 

the most reliable model for each gait. Specifically, they are 7 

for limping, neuropathic, Parkinson, walking, 9 for ataxic, 

and 10 for hemiplegic. 

The recognition rate of the experiment through CHMMs 

with different number of states is shown in Table III. The 

overall recognition rate is nearly 83%, providing the 

reasonably good performance.  

TABLE III.  RECOGNITION RATE (%) OF SYSTEM THROUGH CHMMS 

WITH DIFFERENT NUMBER OF STATES 

 Atax Hemi Limp Neur Park Walk 

Atax 74.5 12.7 1.8 7.3 0 3.6 

Hemi 7.6 68.4 11.4 0 0 12.7 

Limp 0 5.4 92.4 0 0 2.2 

Neur 0 6.2 9.4 76 0 8.3 

Park 1 0 0 0 99 0 

Walk 7 4 2 2 0 85 

Total 82.55 

 

By using the deployed pathological gait recognition 

algorithm, we can apply it for abnormal gait detection, which 

is a special case of abnormal gait recognition. From Table III, 

we get the remarkable statistical results [13] of abnormal gait 

detection task as in the following,  
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where True Positive (TP) is the number of abnormal gaits 

which are correctly detected, False Positive (FP) is the 

number of normal gaits which are incorrectly recognized to 

be abnormal, True Negative (TN) is the number of normal 

gaits which are correctly recognized, and False Negative 

(FN) is the number of abnormal gait which are not detected. 

Besides the good performance, it is possible to mention 

another advantage of our system; that is, the system only 

requires using very short videos to perform the 

recognition/detection task. In our experiments, 42 seconds 

and 10 seconds are the maximum and minimum video 

lengths, respectively.  

V. CONCLUSION 

In this paper, we have proposed a system for recognition of 

common pathological gaits of the elderly from side view gait 

video. Segmentation of human object by adaptive 

background GMM followed by suitable morphological 

operations helps to provide well-defined silhouettes. With 

the use of features based on Hu’s seven moments, the shape 

of abnormal gaits can be interpreted without tracking limbs 

or body parts. By exploiting the continuous Cyclic HMMs, 

the system has the capability to classify pathological gaits, 

regardless of  the quasi-periodic nature of walking action, 

which results in the high difficulty of recognition task. Initial 

results in experiments on simulated abnormal gait database 

show that the capability of the designed system is promising 

in recognizing as well as detecting several pathological gaits. 

In our future researches, we are going to apply 

three-dimensional and temporal features to make the system 

view-invariant and more accurate. 
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