Recent trends in VLSI Design Applications

By Kanhu Charan Padhy, MD, KCTRONICS Innovative Consultancy Services Pvt Ltd

Co-Authors: Ms. Supreetha Rao, M.Tech, Ms. Supreetha M, M.Tech,

Abstract—With the advent of VLSI design for FPGAs, ASICs, CPLDs, the application areas got expanded from micro-controller to FPGA based technologies. Today, it has moved from commercial application to the defence sectors like missiles & aerospace controls. In this paper/article the use of FPGAs and its interface with various application circuits in the communication field for data (textual & visual) & control transfer. To be specific, the paper discusses the use of FPGA in various communication protocols like SPI, I2C, and TMDS in synchronous mode in Digital System Design using VHDL/Verilog.

Index Terms—Digital System, FPGA, Interface, I2C, Protocols, Software Augmentation, SPI, TMDS, VHDL.

1. INTRODUCTION

The FPGAs (Field Programmable Gate Arrays) has played an important role in the system design. This provides a path for a simple design to be mapped into the FPGA building blocks which further decomposed into various functional circuits. The use of VHDL helps in programming various processes and to optimize through the synthesis. This makes the hardware design check easier through simulation. To do so, Input Output modules are written for the design. There are various methods like built in self test (BIST) is implemented to test the design using the scan design & boundary scan design methodology. It has been discussed in a nut shell the use of SRAM, EEPROM & SPI/I2C interface models using VHDL. The TMDS encoding techniques is also brought out for VDI data transfer.

2. DESIGN ELEMENTS:

2.1 FPGAs:

The complexity of the digital system design, the discrete Integrated circuits find it difficult, which then found to be realized through ASICS (Application Specific Integrated Circuits), and FPGA (Field Programming Arrays). However, the design gets simplified by the use of Hardware Language tools like VHDL & Verilog and other high level languages like System C. As the name suggests that VHDL is a Very High Speed Integrated Circuit (VHSIC) Hardware Description Language, got approved by ANSI (American National Standard Institute) and regarded as VHDL. It has become a very popular tool both for Industry & academic sectors. There are various versions of this language and further improvement gave rise to the latest one named as ieee.std_logic_1164 version. This paper is written for the design of VLSI circuit like Inter facing of Xilinx Spartan6 (XC6SLX45) with FRAM, FM25V02, SRAM IS61C256AH, EEPROM(24C02) with various Sensors, & TMDS Encoder for VDI applications implementation through the use of VHDL algorithms on FPGA Xilinx platform. [7]-[10]

2.2 Language (VHDL):

The language, VHDL has been divided into two constructs such as Entity (ii) architecture. The entity is a pre defined word and the architecture is a relationship between input & outputs of the systems bound to the entity. This binding helps in the visibility of the entity to the architecture. The system can be designed with the use of VHDL language on the Xilinx platform, FPGA being as the target device where the application program can be stored for the purpose of application devices.[2]

2.3 Communication Protocol:

In this kinetic world, the present requirement needs the systems to be controlled by a programmed manner in order to keep pace with the shortest time interval solutions. Such a fast transfers of our data & control signals are only possible by various communication modes so far developed. To enact such dynamic movements of data/controls to the application devices by a controller/master device, the path for the communication need to be selected suitably. Hence, there are some protocols in our communication systems that have been devised to transfer /control the transition minimization of data and the control signal transfer. To name such communication protocols, they are SPI (Serial Peripheral Interface) / or I2C (Inter Integrated Circuit) & TMDS (Transition Minimized Differentiation Signaling) protocols. It has been found to very useful even in our Missile/aircraft application like Tomahawk Missile systems. The following sections are described with the interface of FPGAs with various slave devices, for various application circuits with use of these protocols.[4],[7],[10]

2.3.1 SPI Protocol:

The SPI Protocol is a Serial Peripheral Interface works in the synchronous mode of communication. It uses the 4 wires/3-wires bus between the master & slave devices to transfer the data and control signals through individual lines. Hence it becomes simpler in the design of interface. Those bus lines are named as MOSI (Master Out &Slave In), MISO (Master IN Slave Out), SCLK(Serial Clock) and the SS
(Slave Select). The master (Device) can be interfaced with many slaves (devices) controlled through Slave Select line. This protocol can be used in 4 modes. However, preferably, this is used with the use of 2 modes viz., Mode 00b (0d) & mode 11b(3d). Mode 00b means the data transfer takes place during the SCLK in Phase 0, Polarity 0 in mode (00b) 0d, & SCLK in Phase 1 & Polarity 1 in mode (11b) .3d. Such a protocol is used even in various missile systems & aircraft applications and various sensors applications purposes. viz.,

(i) Presently it is used in the missile/avionics sectors [1].

(ii) SPI protocol is being used for the control application of gyroscopic sensor modules. [1].

The Interface of Master Slave communication is depicted below in Fig:2.

![Fig:1 SPI Protocol](image)

2.3.2 I2C(Inter Integrated Circuit) Protocol:

The I2C communication protocol is another important one in the synchro mode. It uses only two wires bus, i.e., (i) SDA (Serial Data) & (ii) SCL (Serial Clock). The SDA line is bi-direction one where as the SCL is a clock generation line. This protocol can allow many masters & many slaves to be interfaced. The data & control signals transition can be controlled through an acknowledge mode of acceptance/hold/ and with start & stop bit signals. In case of multiple master situations, the master having their own clock generation systems, the devices are connected in the Wired-AND conditions, thereby the data collision of two or more masters are avoided. This is done through various techniques like Arbitration techniques & Handshake conditions of synchronization. This mode is complex as compared to SPI mode. However, due to its other advantages like low & medium speed requirements these are used for on-board chips/application circuits. [10],[3],[4].

The interface of Master-Slave device using I2C protocol is depicted below in Fig:2

![Fig:2 I2C Protocol](image)

2.3.3 TMDS (Transition Minimization Differential Signaling):

This is another method called TMDS technique of data conversion & transfer of visual data & control signals between the master & slave devices for the application purposes. It is also called the TMDS coding standard. The communication is done through the various processes like phase detection, coding schemes using 8Bit to 10Bits with the word and speed synchronization techniques. As the name signifies the differential signaling method which is achieved through the transmission of 1s & 0s in the same single lines with it’s opposite values, thereby reducing the EM Interference. This is graphically depicted in Fig:3

The visual data is transferred from the transmitter with the help of TMDS encoder & the same data is received by a decoder by decoding techniques at the receiver. The processes uses, which are called as serializer & deserializer methods by the 8B/10B coding technique

![Fig:3 TMDS Protocol](image)

This protocol has been developed by DDWG (Digital Display Working Group). In this system, there are two possible links viz., Link #0 & Link #1. Link#0 is Primary and Link#1 is secondary. However, during transmission, the TMDS Link #0 is always available for service, and Link#1 is active only when there is demand for pixel forms & timing requirement becomes greater than 165 Mhz. This TMDS interfaces between the FPGA and any LCD Device.[9].

3.0 Digital System Design

The design elements as discussed are put into use in a suitable manner as to provide the necessary input and Output conditions after being processed. The systematic process helps to constructs circuits design by meeting the requirements & the specifications. In particular VLSI (Very Large Scale Integration) of electronic circuits has been found to be very useful in the field of communication. Any project to start with, has to be defined by a top level description of the specifications. The system specification then becomes useful in determining abstract, the high-level model. The abstract modeling has to be done by a hardware language and it is done either by VHDL or Verilog. The abstract model reflects the behavior information of each block & their functions. A digital system can be described by it’s abstraction right from the architecture level to the gate level. The simulation
semantics are associated with all such HDL packages to enable to verify the correctness of the design. The synthesis process of the model enables the translation exercise bringing out a net list, which maps in the form of RTL blocks /gate levels circuitry.[3],[7],[8]

4.0 Digital System Design

The digital system design is nothing but the embedded systems, which forms a part or many parts in a simple or complex system. The program can be a high level like C or C++ or any hardware language (HDL) like VHDL/Verilog. However, the complexity of high level language restrains the use by many of designers; rather they prefer to use HDL languages. Hence, it is felt that the use of VHDL helps in the verification process in various stages to ensure the correctness of the stages before entering to the next.[4]-[6]

The Digital System Design flow is shown below for better clarity in Fig:4.

Fig:4 Digital System Design Flow Diagram

A model of a digital circuit is an abstract by a modeling language. Such a language is preferred here to VHDL/Verilog. However, the object oriented language like C++ has an extension to it, called System C, to be one such language, which could be used for this purpose too. [3]-[5]

6.0 Software Augmentation:

Although many authors has spelt out various design methods, however, the recent methodology is the process of augmentation of the application software into the hardware (application circuit/device) itself. The application software developed for any application devices is programmed & stored in a memory (slave Device) though the FPGA (target device) on any Software Platform form like Xilinx. The FPGA has been embedded into a Spartan6 Xilinx Platform. The memory could be an on board SRAM, or any external SRAM, and the display device could be a LCD/or SSD/or LEDs. This could be done as described below:

The very initial step is to perform the study of requirements and done the analysis for both hardware and software essentialities & constraints. Then the hardware & software constraints are resolved. Once the constrains are removed, the hardware design is performed, in a concurrent mode. Then the software is made ready.

The paper discussed here, has been chosen for the FPGA on Spartan6 Xilinx platform. The HDL used here is VHDL. The application software is programmed suitably. Last but not the least, is the augmentation of software into the application devices. Our co-authors have already selected various sensors for their applications. Accordingly, the program has been verified through the built in ISim software tools for the proper timing and correctness of the design. This paper is a collective effort of our engineers for their projects, in realization of Modeling, Simulation & Implementation of various communication protocols in our projects using VHDL language and using appropriate hard -wares as required & at KCTRONICS Innovative Services Private Limited, Bangalore.[2],[3]

ACKNOWLEDGMENT

I would like to thank M/S KCTRONICS Innovative Consultancy Services Private Limited for providing this opportunity to forward this paper to IJACET. In addition, I would like to thank our co-author friends, Ms Supreetha Rao, Supreetha M, Prajna Rai, Vidya Venkatesh, who are pursuing their M.Tech (Final Semester) in VLSI Design & Embedded System from Sahyadri College of Engineering & Management, Mangalore; at present working in Internship mode in our company, in realizing the circuit implementation on various interface models using VHDL programs.

REFERENCES

[1]. CSE260M Lab5 vide: Gyroscope-int.pdf
[3]. A VHDL Synthesis Primer by J.Bhaskar, SB Publications
Personal Profile of The Authors:

First Author: Kanhu Charan Padhy

1. Name: Kanhu Charan Padhy
2. Qualifications: BE (Electronics), PO (Computer Engg), Diploma (Electronics & Telecommunication), PGDBA (HRM & Finance), MBA (Finance)
3. Publications:
 (i) A paper on Ground and Flight Test of Systems Used in Military aircraft. At NaSMAC-2004.20-21 August 2004., Bangalore
 (iii) An article on “Quality in Design and Reliability through Repair”
4. Membership:
 (i) SAQR (The Society for Aerospace Quality & Reliability)
 (ii) QCI: FM/SR/4093
 (iii) Axel: Ex-AM-6148
5. Achievements:
 (i) Commendation from Group Capt. Shri P. Kamaraju, OIC, DGSAQA, Min. of Defence, Govt. of India, MS
 (ii) One of the Best Citizen of India in 2003
 (iii) Working as Managing Director, at “KCTRONICS Innovative Consultancy Services Private Limited”, Bangalore
 (iv) Certificate on Microprocessor Architecture, Programming and Applications awarded by UVCE IEEE STUDENTS Branch, Bangalore
 (v) Certificate on “TDC-316 Architecture (Main Frame Computer System), Display, Programming in Brass, ADHS General Features” by ECIL, Hyderabad
 (vi) Certificate on “Six-Sigma – A process for Business Excellence” by CETE, STQC (QCI), Govt. of India, Bangalore

Co-Author: Ms. Supreetha M.

- Received her B.E degree in Electronics and Communication Engineering from Srinivas Institute of Technology in 2013 and currently pursuing her M.Tech in VLSI & Embedded systems in Sahyadri College of Engineering & Management. Presently, she is engaged in the proto-type Design & Development of Digital System in KCTRONICS Innovative Consultancy Services on internship.