
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 4 Issue 4, April 2015

ISSN: 2278 – 1323 All Rights Reserved © 2015 IJARCET 1357

Abstract— Web log data has been the basis for analyzing user

query session behavior for a number of years. Web Search has

become a popular tool for finding information in our daily lives.

Web search engines provide keyword access to web content. In

response to search queries, these engines return lists of Web pages

ranked based on estimated relevance. Information retrieval (IR)

researchers have worked extensively on algorithms to effectively

rank documents. Web search logs have been studied mainly at

session or query level where users may submit several queries

within one task and handle several tasks within one session. A new

concept have been introduced “task trail” to understand search

behaviors. Task is defined as an atomic user information need. The

goal is to obtain more precise information about the search strategy

of the user. In this paper, we analyze and compare task, session and

query trails for search applications as well as classified whether

two queries are from same task and used clustering algorithms to

combine similar queries into the same task.

Index Terms—Search log analysis, Search trails, task evaluation,

task trail

I. INTRODUCTION

Logs containing the search engine interactions of many users

have been mined extensively to enhance search-result ranking.

Richer log data from sources such as browser toolbars offers

insight into the behavior of many users beyond search engines.

Search trails comprising a query and post-query page views can

be mined from these logs [1]. Although trail components—

origins (clicked search results) and destinations (trail end points)

have been used previously to support search, the typical

application of trails is to better rank Web pages [2]. Search trails

are a series of web pages starting with a search query and

terminating with an event such as session inactivity. Although

the traversal of trails following a query is common, about how

much value users derive from following the trail versus sticking

with the origin (the clicked search result) or jumping to the

destination page at the end of the trail [3]. In this paper we

present a clustering algorithm evaluating the result of queries to

users of traversing multi-page search trails.

Manuscript received April, 2015.

 Surabhi S. Golechha, Computer Science and Information Technology,

H.V.P.M COET, Amravati, India, +918983799909

Ranjit R. Keole, Computer Science and Information Technology, H.V.P.M

COET, Amravati, India, +919823852893

A search trail consists of an origin page, intermediate pages, and

a destination page. Origin pages are the search results that start a

search trail. Query and origin pages from search engine click

logs can be used to improve result set relevance.

To determine the value of trail traversal we define number of

trail sources. They are as follows:

Origin: The first page in the trail after the SERP (search engine

result page), visited by clicking on a search result hyperlink. This

is regarded as a baseline in this study since current search

engines show this source alone in search results.

Destination: The last page in the trail, visited prior to trail

termination through a follow-up query or inactivity timeout.

Destinations are defined similarly to the popular destinations

from White et al. [3].

Sub-trail: All pages in the trail except for destination, including

all post-SERP pages.

Full-trail: The complete trail, including all post-SERP pages.

Including user satisfaction analysis, user search interest

prediction, website recommendation etc, previous work has

shown that search logs can be used in various applications. Work

had been analyzed mostly on web search logs at query or session

level, where a session is defined as ―a series of queries by a

single user made within a small range of time‖. However, few of

them have considered search logs at task level. Queries are often

ambiguous and short therefore segmentation of sessions into

tasks is non-trivial. Beyond timeout based method, several work

tried to improve session boundary detection by adding features

such as query reformulation patterns. Jones et al. [4] proposed to

extract tasks from sessions by using features based on time

stamp, query terms, etc. Lucchese et al. [5] proposed to leverage

information from Wikipedia and Wiki dictionary to further

improve the performance of task identification. Although

previous studies have discussed the problem of session boundary

detection and task identification [4], [5]. In this paper we

systematically analyze and compare the effectiveness of using

task trails, session trails, and query trails for search applications.

 Searching activities of users in search engines is recorded by

web search logs. Previous studies have shown that search logs

can be used in various applications including user satisfaction

analysis, page utility estimation, user search interest prediction,

query suggestion, webpage re-ranking [1], website

recommendation, etc. Most of previous work analyzed web

search logs at session or query level, where a session is defined

as ―a series of queries by a single user made within a small range

of time‖. However, few of them have considered search logs at

task (atomic user information need) level.

Analysis of Trail Algorithms for User Search

Behavior

Surabhi S. Golechha, Prof. R.R. Keole

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 4 Issue 4, April 2015

ISSN: 2278 – 1323 All Rights Reserved © 2015 IJARCET 1358

Trails can be presented as an alternative to result lists, as instant

answers above result lists, in pop-ups shown after hovering over

a result, below each result along with the snippet and URL, or

even on the click trail a user is following. Follow-up user studies

and large-scale flights will further analyze trail appropriateness

for different queries and compare trail selection algorithms and

trail presentation methods.

II. LITERATURE REVIEW

In 2004, K. Sugiyama tried constructing user profiles from past

brosing behavior of user.

In 2009, Attenberg used query logs to study user behavior on

sponsored search results.

In 2010, R. White and J. Haung [1] presented a log-based study

estimating the user value of trail following. The findings have

implications for the design of search systems, including trail

recommendation systems that display trails on search result

pages.

In 2010, B.Xiang, D. Jiang, J.Pei, Q. He, Z. Liao [6] studied the

problem of using context information in ranking documents in

Web search. It conducted an empirical study on real search logs

and developed four principles for context-aware ranking. Also,

adopted a learning-to-rank approach and incorporated our

principles to ranking models.

In 2010, A. Hassan, R. Jones, and K. Klinkner [7] addressed the

problem of predicting user search goal success by modeling user

behavior. It shows empirically that user behavior alone can give

an accurate picture of the success of the user’s web search goals,

without considering the relevance of the documents displayed.

In 2010, F. Radlinski and N. Craswell [8] presented a detailed

comparison between performance as measured by

judgments-based information retrieval metrics and performance

as measured by usage-based interleaving on five real pairs of

web search ranking functions.

In 2010, A. Singla, R. White, J. Huang quantified the benefit that

users currently obtain from trail following and compare different

methods for finding the best trail for a given query and each

top-ranked result.

In 2011, A. Hassan, Y. Song, L.-w. He [9] performed a large

scale user study collected explicit judgments of user satisfaction

with the entire search task. Results were analyzed using

sequence models that incorporate user behavior to predict

whether the user ended up being satisfied with a search or not.

Metric on millions of queries collected from real Web search

traffic and show empirically that user behavior models trained

using explicit judgments of user satisfaction outperform several

other search quality metrics.

In 2011, C. Lucchesez, S. Orlandoy, R. Peregoz, F. Silvestriz, G.

Tolomeizy[4] proposed a clustering-based solution, leveraging

distance measures based on query content and semantics, while

query timestamps were used for a first pre-processing breaking

phase.

In 2011, Z. Liao, D. Jiang, E. Chen, J. Pei, H. Cao and H. Li,[11]

proposed a novel context-aware query suggestion approach. The

experimental results clearly show that approach outperforms

three baseline methods in both coverage and quality of

suggestions.

In 2012, O. Chapelle,T. Joachims, F. Radlinski,Y.

Yue[12]extended and combined the body of empirical evidence

regarding interleaving, and provided a comprehensive analysis

of interleaving using data from two major commercial search

engines and a retrieval system for scientific literature

In 2012, Y. Song, D. Zhou, L. w. He [13] presented a novel

query suggestion framework which extracted user preference

data from user sessions in search engine logs. We then used the

user patterns to build two suggestion models.

In 2013, H. Wang, Y. Song, M.-W. Chang, X. He, R. White, and

W. Chu [14] targeted the identification of long-term, or

cross-session, search tasks (transcending session boundaries) by

investigating inter-query dependencies learned from users

searching behaviors. A semi-supervise0d clustering model is

proposed based on the latent structural SVM framework and a

set of effective automatic annotation rules are proposed as weak

supervision to release the

In 2013, H. Feild and J.Allan introduced a novel generalized

model for generating recommendations over a search context.

While only considered query text in this study, the model can

handle integration over arbitrary user search behavior, such as

page visits, dwell times, and query abandonment. In addition, it

can be used for other types of recommendation, including

personalized web search.

In 2014, Zhen Liao introduced ―task trail‖ to understand user

search behaviors. It conducted extensive analyses and

comparisons to evaluate the effectiveness of task trails in several

search applications: determining user satisfaction, predicting

user search interests, and suggesting related queries.

III. RELATED WORK

Web logs contain a set of users, and each user has a series of

successive behaviors b1, b2,…., bn, where each bi can be search

behavior. A single query submitted to a search engine is search

behavior. In web logs, a single query is often followed by a series

of browse behaviors before the next query is submitted by the

same user.

A. Query Trail

A query trail q represents a sequence of user behaviors b1
q
,

b2
q
,...., bm

q
 of one user u, starting from a query, followed by a

sequence of browsing behaviors triggered by this query.

B. Session Trail

A session trail s is a sequence of user behaviors b1
s
, b2

s
,...., bk

s
 k

of one user u, where user behaviors are consecutive in search

logs and any two consecutive behaviors ei , ei+1 occurred within

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 4 Issue 4, April 2015

ISSN: 2278 – 1323 All Rights Reserved © 2015 IJARCET 1359

time threshold Θ. The session strictly follows the chronological

order of user behaviors in search logs. The entire search logs of

one user can be segmented into a sequence of disjoint sessions

along the time dimension.

C. Task Trail

A task trail t is a sequence of user behaviors b1
t
, b2

t
,...., br

t
 of one

user u occurred within one session, where all user behaviors

collectively define an atomic user information need.

The task segmentation actually acquires two steps since tasks are

constrained in session boundary. First, segment logs into

sessions according to time threshold. Second, sessions are

segmented into tasks according to semantic relationships

between queries. Considering that the user activities within one

task may not be necessarily in series in web logs because

multiple tasks can be interleaved with each other. This is one of

the major differences between session and task [4], [5]. Note that

we define the task trail within the session by assuming that user

behavior happened beyond a timeout may have different

intentions. For example, even one user searched the same query

―weather‖ or ―current time in ―California‖ in different session;

there may be variance in search results.

In this paper task is defined as an atomic user information need.

Task extraction framework can be described as follows. Firstly,

we learn to measure similarities between query pairs. Secondly,

through clustering algorithms, queries within sessions are

grouped into tasks. Using a binary classification approach, Jones

and Klinkner [4] proposed to classify queries into tasks, whereas

[5] proposed to cluster queries into the same task. Our method

classifies whether two queries are from same task and to merge

similar queries into same task, we use clustering algorithms.

As discussed and tested in [5], this method performs better than

Query Flow Graph, DBScan, K-means. However, in

constructing the graph and extracting connected component, the

time complexity can be O (k ∙ N
2
) where k is the dimension

features and N is the number of queries.

Algorithm 1: Query Clustering (QC).

Input: Query set Q, cut-off threshold ct;

Output: A set of tasks Θ;

Initialization: Θ = Φ; Query to task table L=Φ;

 1: for len = 1 : |Q| − 1 do

 2: for i = 1 : |Q| − 1 do

 3: // if two queries are not in the same task

 4: if L [Qi] ≠ L [Qi+len] then

 5: // compute similarity takes O (k)

 6: s ← sim (L [Qi];L [Qi+len]);

 7: if s ≥ ct then

 8: merge Θ (Qi) and Θ (Qi+len);

 9: modify L;

10: // break if there is only one task

11: if |Θ| = 1 break;

12: return Θ;

To further reduce the time cost (especially the cost of the worst

cases) we propose a bounded spread version of Query clustering,

named bounded query clustering. The idea is that two queries far

away from each other are not likely from the same task. By

setting a length bound bl, the time complexity of bounded query

clustering is reduced to O (k ∙bl∙ N). In the end, tasks of same

queries are merged into a single one.

Algorithm 2: Bounded Query Clustering (BQC).

Input: Query set Q, cut-off threshold ct; bounded

 length bl;

Output: A set of tasks Θ;

Initialization: Θ = Φ; Query to task table L=Φ;

M= Φ;

 1: // initialize same queries into one task

 2: cid=0;

 3: for i = 1: |Q| − 1 do

 4: if M [Qi] exists then

 5: add Qi into Θ (M [Qi]);

 6: else

 7: M [Qi] = cid++

 8: if |Θ| = 1 return Θ;

 9: for len = 1 : bl do

10: for i = 1 : |Q| − 1 do

11: // if two queries are not in the same task

12: if L [Qi] ≠ L [Qi+len] then

13: // compute similarity takes O (k)

14: s ← sim (L [Qi];L [Qi+len]);

15: if s ≥ ct then

: merge Θ (Qi) and Θ (Qi+len);

 9: modify L;

10: // break if there is only one task

11: if |Θ| = 1 break;

12: return Θ;

We propose a Query Clustering approach (QC) in this paper as

shown in Algorithm 1. We observe that consecutive query pairs

are more likely belonging to same task than non-consecutive

ones; QC prefers to first compute the similarities for consecutive

query pairs by timestamps. Take an example, given a series of

queries {q1, q2, q3, q4}, QC will first compute for pairs {q1 → q2,

q2 → q3, q3 → q4}, it can reduce the computational cost from O

(k ∙ N
2
) to O (k ∙ N) if and only if there is only one task in the

session. On the basis of statistics that about 50% sessions only

have one task as shown in table I (D0 - dataset consists of user

browsing logs from a widely used browser plug-in toolbar, D1-

dataset consists of web search logs from Bing), QC is efficient to

identify them. For sessions with multiple tasks, QC is also faster

than standard implementation.

For example, if the sequences {q1, q2, q3, q4} are grouped into

{q1} and {q2, q3, q4}, the standard approach compute all 6 query

pairs but QC only needs to calculate 5 pairs while pair {q2 → q4}

is skipped. That is because it skips computing the similarity of

query pairs from the same task. In addition, QC needs extra O

(N) space for storing a query to task mapping table, which is

affordable in current applications.

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 4 Issue 4, April 2015

ISSN: 2278 – 1323 All Rights Reserved © 2015 IJARCET 1360

TABLE I

Basic Statistics of Search Logs

Statistics D0 D1

Avg. # of Queries in Sessions 5.81 2.54

Avg. # of Queries in Tasks 2.06 1.60

Avg. # of Tasks in Sessions 2.82 1.58

% of Single-Tasks Sessions 53.29 70.72

% of Multi-Tasks Sessions 46.71 29.28

% of Interleaved Tasks Sessions 15.25 4.78

% of Single-Query Tasks 48.75 71.86

% of Multi-Query Tasks 51.24 28.13

IV. RESULTS OF SEARCH APPLICATIONS

In this section, we present results of comparison on evaluating

the effectiveness of task trails in real applications. Here we

present the methods, metrics and findings in search applications.

A. Estimating User Satisfaction

To know whether the user is obtaining the findings from query

executed by him on the search engine, we consider features

which take into account the entire pattern of user search

behavior, including query, click and dwell-time as well as

number of reformulations.

1. Clicks: Jung et al. [11] show that considering the last click

of a session may be the most important piece of

information in relating user clicks to document relevance.

Clicks in a user search goal as well as the times between

actions allow us to predict the user’s success at that goal.

2. Dwell Time: An important feature that we consider is the

dwell time. Dwell time of a click is the amount of time

between the click and the next action (query, click, or

end). We calculate the dwell times for all clicks during

goal and use the maximum, minimum, and average dwell

times as features to predict success. It is widely believed

that long dwell time of clicks is an important predictor of

success.

3. Goal Success: We can build two Markov models to

compute the probability of user success and failure. The

Markov Model includes {clicks, queries, dwell time (>30

sec)} as states {Q, SS, SS_Long}, respectively. On the

basis of labelled dataset, we split two Markov models.

Given a new user task trail, we can compare the

probability from successful and unsuccessful models and

estimate the label of user satisfaction. For more details,

see [10].

By using the task success labels based on Hidden Markov

Model, we can study the percentage of multitask sessions with

both successful and unsuccessful tasks.

B. Prediction on User Search Interests

For improving ranking or personalization of search systems, user

search interests can be captured. Previous work has taken

advantage of queries and clicks preceding user current query as

context to perform context-aware ranking. One of key aspect is

to promote or demote the rank of URLs based on their

relationship with current query’s context.

Since queries submitted by users reflect user information needs,

we can use queries to represent user search interests. On the

other hand, queries are often short and ambiguous. Therefore,

we can summarize user search interests at topic level. By taking

previous co-session or co-task queries as context information to

user’s current query, we can construct different context models.

To know which context model can predict user search interests

better, we can compare topic similarities of co-session and

co-task query pairs.

V. CONCLUSION

The result of the analysis of user search behavior trails has

developed to use task trail for better understanding of user search

behaviors. We observed and found result on evaluation of the

effectiveness of task trails in real applications. We have taken

extensive analyses and comparisons to the effectiveness of task

trails in several search applications: estimating user satisfaction,

prediction on user search interests. To reduce the time

complexity, we have also proposed clustering algorithm to

merge similar queries into same task, which performs better than

other approaches. We defined query, session and task trails and

found users are more likely to find useful information following

the task trails.

ACKNOWLEDGMENT

My thanks to the guide Prof.R.R.Keole and Principal

Dr.A.B.Marathe, who provided me constructive and positive

feedback during the preparation of this paper.

REFERENCES

[1] R. White and J. Huang, ―Assessing the scenic route: measuring the value

of search trails in web logs,‖ in Proc. 33rd Int. ACM SIGIR Conf. Res.

Develop. Inform. Retrieval, 2010, pp. 587–594.

[2] L. D. Catledge and J. E. Pitkow, ―Characterizing browsing strategies in the

world-wide web,‖ Comput. Netw. ISDN Syst., vol. 27, no. 6, pp.

1065–1073, 1995.

[3] Z. Liao, Y. Song, L. -w. He, and Y. Huang, ―Evaluating the effectiveness

of search task trails,‖ in Proc. 21st Int. Conf. World Wide Web, 2012, pp.

489–498.

[4] C. Lucchese, S. Orlando, R. Perego, F. Silvestri, and G. Tolomei,

―Identifying task-based sessions in search engine query logs,‖ in Proc.

4thACMInt. Conf.WebSearch DataMining, 2011, pp. 277–286.

[5] R. White, P. Bennett, and S. Dumais, ―Predicting short-term interests

using activity-based search context,‖ in Proc. 19th ACM Int. Conf.

Inform. Knowl. Manage., 2010, pp. 1009–1018.

[6] B. Xiang, D. Jiang, J. Pei, X. Sun, E. Chen, and H. Li, ―Contextaware

ranking in web search,‖ in Proc. 33rd Int. ACM SIGIR Conf. Res.

Develop. Inform. Retrieval, 2010, pp. 451–458.

[7] A. Hassan, R. Jones, and K. Klinkner, ―Beyond DCG: User behavior as a

predictor of a successful search,‖ in Proc. 3rd ACM Int. Conf. Web Search

Data Mining, 2010, pp. 221–230.

[8] F. Radlinski and N. Craswell, ―Comparing the sensitivity of information

retrieval metrics,‖ in Proc. 33rd Int. ACM SIGIR Conf. Res. Develop.

Inform. Retrieval, 2010, pp. 667–674.

[9] A. Hassan, Y. Song, and L.-w. He, ―A task level user satisfaction metric

and its application on improving relevance estimation,‖ in Proc.

20thACMInt. Conf. Inform. Knowl. Manage., 2011, pp. 125–134.

[10] Y. Liu, B. Gao, T.-Y. Liu, Y. Zhang, Z. Ma, S. He, and H. Li,―Browserank:

letting web users vote for page importance,‖ in Proc. 31st Annu. Int. ACM

SIGIR Conf. Res. Develop. Inform. Retrieval, 2008, pp. 451–458.

[11] Z. Liao, D. Jiang, E. Chen, J. Pei, H. Cao, and H. Li, ―Mining

conceptsequences from large-scale search logs for context-aware query

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 4 Issue 4, April 2015

ISSN: 2278 – 1323 All Rights Reserved © 2015 IJARCET 1361

suggestion,‖ ACM Trans. Intell. Syst. Technol., vol. 3, pp. 17:1–17:40,

2011.

[12] O. Chapelle, T. Joachims, F. Radlinski, and Y. Yue, ―Large-scale

validation and analysis of interleaved search evaluation,‖ ACM Trans.

Inform. Syst., vol. 30, no. 1, 2012.

[13] Y. Song, D. Zhou, and L.-w. He, ―Query suggestion by constructing

term-transition graphs,‖ in Proc. 5th ACM Int. Conf. Web Search Data

Mining, 2012, pp. 353–362.

[14] H. Wang, Y. Song, M.-W. Chang, X. He, R. White, and W. Chu,

―Learning to extract cross-session search tasks,‖ in Proc. 22nd Int. Conf.

World Wide Web, 2013, pp. 1353–1364.

Surabhi S.Golechha is currently pursuing master’s degree program in

Computer Science and Information Technology Engineering in HVPM’s

College of Engineering &Technology, Amravati, India.

.

 Ranjit R. Keole is working as Assistant Professor in HVPM’s College of

Engineering & Technology, Amravati, India.

