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Abstract— Web log data has been the basis for analyzing user 

query session behavior for a number of years. Web Search has 

become a popular tool for finding information in our daily lives. 

Web search engines provide keyword access to web content. In 

response to search queries, these engines return lists of Web pages 

ranked based on estimated relevance. Information retrieval (IR) 

researchers have worked extensively on algorithms to effectively 

rank documents. Web search logs have been studied mainly at 

session or query level where users may submit several queries 

within one task and handle several tasks within one session. A new 

concept have been introduced “task trail” to understand search 

behaviors. Task is defined as an atomic user information need. The 

goal is to obtain more precise information about the search strategy 

of the user. In this paper, we analyze and compare task, session and 

query trails for search applications as well as classified whether 

two queries are from same task and used clustering algorithms to 

combine similar queries into the same task. 

 
Index Terms—Search log analysis, Search trails, task evaluation, 

task trail  

 

I. INTRODUCTION 

Logs containing the search engine interactions of many users 

have been mined extensively to enhance search-result ranking. 

Richer log data from sources such as browser toolbars offers 

insight into the behavior of many users beyond search engines. 

Search trails comprising a query and post-query page views can 

be mined from these logs [1]. Although trail components— 

origins (clicked search results) and destinations (trail end points) 

have been used previously to support search, the typical 

application of trails is to better rank Web pages [2]. Search trails 

are a series of web pages starting with a search query and 

terminating with an event such as session inactivity. Although 

the traversal of trails following a query is common, about how 

much value users derive from following the trail versus sticking 

with the origin (the clicked search result) or jumping to the 

destination page at the end of the trail [3]. In this paper we 

present a clustering algorithm evaluating the result of queries to 

users of traversing multi-page search trails. 
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A search trail consists of an origin page, intermediate pages, and 

a destination page. Origin pages are the search results that start a 

search trail. Query and origin pages from search engine click 

logs can be used to improve result set relevance. 

To determine the value of trail traversal we define number of 

trail sources. They are as follows: 

Origin: The first page in the trail after the SERP (search engine 

result page), visited by clicking on a search result hyperlink. This 

is regarded as a baseline in this study since current search 

engines show this source alone in search results. 

Destination: The last page in the trail, visited prior to trail 

termination through a follow-up query or inactivity timeout. 

Destinations are defined similarly to the popular destinations 

from White et al. [3].  

Sub-trail: All pages in the trail except for destination, including 

all post-SERP pages. 

Full-trail: The complete trail, including all post-SERP pages. 

 

Including user satisfaction analysis, user search interest 

prediction, website recommendation etc, previous work has 

shown that search logs can be used in various applications. Work 

had been analyzed mostly on web search logs at query or session 

level, where a session is defined as ―a series of queries by a 

single user made within a small range of time‖. However, few of 

them have considered search logs at task level. Queries are often 

ambiguous and short therefore segmentation of sessions into 

tasks is non-trivial. Beyond timeout based method, several work 

tried to improve session boundary detection by adding features 

such as query reformulation patterns. Jones et al. [4] proposed to 

extract tasks from sessions by using features based on time 

stamp, query terms, etc. Lucchese et al. [5] proposed to leverage 

information from Wikipedia and Wiki dictionary to further 

improve the performance of task identification. Although 

previous studies have discussed the problem of session boundary 

detection and task identification [4], [5]. In this paper we 

systematically analyze and compare the effectiveness of using 

task trails, session trails, and query trails for search applications. 

 

  Searching activities of users in search engines is recorded by 

web search logs. Previous studies have shown that search logs 

can be used in various applications including user satisfaction 

analysis, page utility estimation, user search interest prediction, 

query suggestion, webpage re-ranking [1], website 

recommendation, etc. Most of previous work analyzed web 

search logs at session or query level, where a session is defined 

as ―a series of queries by a single user made within a small range 

of time‖. However, few of them have considered search logs at 

task (atomic user information need) level. 
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Trails can be presented as an alternative to result lists, as instant 

answers above result lists, in pop-ups shown after hovering over 

a result, below each result along with the snippet and URL, or 

even on the click trail a user is following. Follow-up user studies 

and large-scale flights will further analyze trail appropriateness 

for different queries and compare trail selection algorithms and 

trail presentation methods. 

 

II. LITERATURE REVIEW 

 

In 2004, K. Sugiyama tried constructing user profiles from past 

brosing behavior of user. 

 

In 2009, Attenberg used query logs to study user behavior on 

sponsored search results. 

 

In 2010, R. White and J. Haung [1] presented a log-based study 

estimating the user value of trail following. The findings have 

implications for the design of search systems, including trail 

recommendation systems that display trails on search result 

pages. 

 

In 2010, B.Xiang, D. Jiang, J.Pei, Q. He, Z. Liao [6] studied the 

problem of using context information in ranking documents in 

Web search. It conducted an empirical study on real search logs 

and developed four principles for context-aware ranking. Also, 

adopted a learning-to-rank approach and incorporated our 

principles to ranking models.  

 

In 2010, A. Hassan, R. Jones, and K. Klinkner [7] addressed the 

problem of predicting user search goal success by modeling user 

behavior. It shows empirically that user behavior alone can give 

an accurate picture of the success of the user’s web search goals, 

without considering the relevance of the documents displayed. 

 

In 2010, F. Radlinski and N. Craswell [8] presented a detailed 

comparison between performance as measured by 

judgments-based information retrieval metrics and performance 

as measured by usage-based interleaving on five real pairs of 

web search ranking functions. 

 

In 2010, A. Singla, R. White, J. Huang quantified the benefit that 

users currently obtain from trail following and compare different 

methods for finding the best trail for a given query and each 

top-ranked result. 

 

In 2011, A. Hassan, Y. Song, L.-w. He [9] performed a large 

scale user study collected explicit judgments of user satisfaction 

with the entire search task. Results were analyzed using 

sequence models that incorporate user behavior to predict 

whether the user ended up being satisfied with a search or not. 

Metric on millions of queries collected from real Web search 

traffic and show empirically that user behavior models trained 

using explicit judgments of user satisfaction outperform several 

other search quality metrics.  

 

In 2011, C. Lucchesez, S. Orlandoy, R. Peregoz, F. Silvestriz, G. 

Tolomeizy[4] proposed a clustering-based solution, leveraging 

distance measures based on query content and semantics, while 

query timestamps were used for a first pre-processing breaking 

phase. 

 

In 2011, Z. Liao, D. Jiang, E. Chen, J. Pei, H. Cao and H. Li,[11] 

proposed a novel context-aware query suggestion approach. The 

experimental results clearly show that approach outperforms 

three baseline methods in both coverage and quality of 

suggestions. 

 

In 2012, O. Chapelle,T. Joachims, F. Radlinski,Y. 

Yue[12]extended and combined the body of empirical evidence 

regarding interleaving, and provided a comprehensive analysis 

of interleaving using data from two major commercial search 

engines and a retrieval system for scientific literature 

 

In 2012, Y. Song, D. Zhou, L. w. He [13] presented a novel 

query suggestion framework which extracted user preference 

data from user sessions in search engine logs. We then used the 

user patterns to build two suggestion models. 

 

In 2013, H. Wang, Y. Song, M.-W. Chang, X. He, R. White, and 

W. Chu [14] targeted the identification of long-term, or 

cross-session, search tasks (transcending session boundaries) by 

investigating inter-query dependencies learned from users 

searching behaviors. A semi-supervise0d clustering model is 

proposed based on the latent structural SVM framework and a 

set of effective automatic annotation rules are proposed as weak 

supervision to release the  

 

In 2013, H. Feild and J.Allan introduced a novel generalized 

model for generating recommendations over a search context. 

While only considered query text in this study, the model can 

handle integration over arbitrary user search behavior, such as 

page visits, dwell times, and query abandonment. In addition, it 

can be used for other types of recommendation, including 

personalized web search. 

 

In 2014, Zhen Liao introduced ―task trail‖ to understand user 

search behaviors. It conducted extensive analyses and 

comparisons to evaluate the effectiveness of task trails in several 

search applications: determining user satisfaction, predicting 

user search interests, and suggesting related queries. 

 

III. RELATED WORK 

 

Web logs contain a set of users, and each user has a series of 

successive behaviors b1, b2,…., bn, where each bi can be search 

behavior. A single query submitted to a search engine is search 

behavior. In web logs, a single query is often followed by a series 

of browse behaviors before the next query is submitted by the 

same user.  

 

A. Query Trail 

A query trail q represents a sequence of user behaviors b1
q
, 

b2
q
,...., bm

q
 of one user u, starting from a query, followed by a 

sequence of browsing behaviors triggered by this query. 

 

B. Session Trail 

A session trail s is a sequence of user behaviors b1
s
, b2

s
,...., bk

s
 k 

of one user u, where user behaviors are consecutive in search 

logs and any two consecutive behaviors ei , ei+1 occurred within 
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time threshold Θ. The session strictly follows the chronological 

order of user behaviors in search logs. The entire search logs of 

one user can be segmented into a sequence of disjoint sessions 

along the time dimension. 

C. Task Trail 

A task trail t is a sequence of user behaviors b1
t
, b2

t
,...., br

t
 of one 

user u occurred within one session, where all user behaviors 

collectively define an atomic user information need.  

 

The task segmentation actually acquires two steps since tasks are 

constrained in session boundary. First, segment logs into 

sessions according to time threshold. Second, sessions are 

segmented into tasks according to semantic relationships 

between queries. Considering that the user activities within one 

task may not be necessarily in series in web logs because 

multiple tasks can be interleaved with each other. This is one of 

the major differences between session and task [4], [5]. Note that 

we define the task trail within the session by assuming that user 

behavior happened beyond a timeout may have different 

intentions. For example, even one user searched the same query 

―weather‖ or ―current time in ―California‖ in different session; 

there may be variance in search results. 

 

In this paper task is defined as an atomic user information need. 

Task extraction framework can be described as follows. Firstly, 

we learn to measure similarities between query pairs. Secondly, 

through clustering algorithms, queries within sessions are 

grouped into tasks. Using a binary classification approach, Jones 

and Klinkner [4] proposed to classify queries into tasks, whereas 

[5] proposed to cluster queries into the same task. Our method 

classifies whether two queries are from same task and to merge 

similar queries into same task, we use clustering algorithms. 

As discussed and tested in [5], this method performs better than 

Query Flow Graph, DBScan, K-means. However, in 

constructing the graph and extracting connected component, the 

time complexity can be O (k ∙ N
2
) where k is the dimension 

features and N is the number of queries. 

 

Algorithm 1: Query Clustering (QC). 

 

Input: Query set Q, cut-off threshold ct; 

Output: A set of tasks Θ; 

Initialization: Θ = Φ; Query to task table L=Φ; 

  1: for len = 1 : |Q| − 1 do 

  2:    for i = 1 : |Q| − 1 do 

  3:       // if two queries are not in the same task 

  4:       if L [Qi] ≠ L [Qi+len] then 

  5:          // compute similarity takes O (k) 

  6:          s ← sim (L [Qi];L [Qi+len]); 

  7:          if s ≥ ct then 

  8:             merge Θ (Qi) and Θ (Qi+len); 

  9:             modify L; 

10:     // break if there is only one task 

11:    if |Θ| = 1 break; 

12:  return Θ; 

 

 

 

 

To further reduce the time cost (especially the cost of the worst 

cases) we propose a bounded spread version of Query clustering, 

named bounded query clustering. The idea is that two queries far 

away from each other are not likely from the same task. By 

setting a length bound bl, the time complexity of bounded query 

clustering is reduced to O (k ∙bl∙ N). In the end, tasks of same 

queries are merged into a single one. 

 

 

 

Algorithm 2: Bounded Query Clustering (BQC). 

 

Input: Query set Q, cut-off threshold ct; bounded 

 length bl; 

Output: A set of tasks Θ; 

Initialization: Θ = Φ; Query to task table L=Φ;  

M= Φ; 

  1: // initialize same queries into one task 

  2: cid=0; 

  3: for i = 1: |Q| − 1 do 

  4:    if M [Qi] exists then 

  5:       add Qi into Θ (M [Qi]); 

  6:    else 

  7:        M [Qi] = cid++ 

  8:  if |Θ| = 1 return Θ; 

  9:  for len = 1 : bl do 

10:    for i = 1 : |Q| − 1 do 

11:       // if two queries are not in the same task 

12:       if L [Qi] ≠ L [Qi+len] then 

13:          // compute similarity takes O (k) 

14:          s ← sim (L [Qi];L [Qi+len]); 

15:          if s ≥ ct then 

:             merge Θ (Qi) and Θ (Qi+len); 

  9:             modify L; 

10:     // break if there is only one task 

11:    if |Θ| = 1 break; 

12:  return Θ; 

 

 

We propose a Query Clustering approach (QC) in this paper as 

shown in Algorithm 1. We observe that consecutive query pairs 

are more likely belonging to same task than non-consecutive 

ones; QC prefers to first compute the similarities for consecutive 

query pairs by timestamps. Take an example, given a series of 

queries {q1, q2, q3, q4}, QC will first compute for pairs {q1 → q2, 

q2 → q3, q3 → q4}, it can reduce the computational cost from O 

(k ∙ N
2
) to O (k ∙ N) if and only if there is only one task in the 

session. On the basis of statistics that about 50% sessions only 

have one task as shown in table I (D0 - dataset consists of user 

browsing logs from a widely used browser plug-in toolbar, D1- 

dataset consists of web search logs from Bing), QC is efficient to 

identify them. For sessions with multiple tasks, QC is also faster 

than standard implementation.  

 

For example, if the sequences {q1, q2, q3, q4} are grouped into 

{q1} and {q2, q3, q4}, the standard approach compute all 6 query 

pairs but QC only needs to calculate 5 pairs while pair {q2 → q4} 

is skipped. That is because it skips computing the similarity of 

query pairs from the same task. In addition, QC needs extra O 

(N) space for storing a query to task mapping table, which is 

affordable in current applications. 
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TABLE I 

Basic Statistics of Search Logs 

 

Statistics D0 D1 

Avg. # of Queries in Sessions 5.81 2.54 

Avg. # of Queries in Tasks 2.06 1.60 

Avg. # of Tasks in Sessions 2.82 1.58 

%  of Single-Tasks Sessions 53.29 70.72 

%  of Multi-Tasks Sessions 46.71 29.28 

%  of Interleaved Tasks Sessions 15.25 4.78 

%  of Single-Query Tasks 48.75 71.86 

%  of Multi-Query Tasks  51.24 28.13 

 

IV. RESULTS OF SEARCH APPLICATIONS 

In this section, we present results of comparison on evaluating 

the effectiveness of task trails in real applications. Here we 

present the methods, metrics and findings in search applications. 

 

A. Estimating User Satisfaction 

 

To know whether the user is obtaining the findings from query 

executed by him on the search engine, we consider features 

which take into account the entire pattern of user search 

behavior, including query, click and dwell-time as well as 

number of reformulations. 

 

1. Clicks: Jung et al. [11] show that considering the last click 

of a session may be the most important piece of 

information in relating user clicks to document relevance. 

Clicks in a user search goal as well as the times between 

actions allow us to predict the user’s success at that goal. 

 

2. Dwell Time: An important feature that we consider is the 

dwell time. Dwell time of a click is the amount of time 

between the click and the next action (query, click, or 

end). We calculate the dwell times for all clicks during 

goal and use the maximum, minimum, and average dwell 

times as features to predict success. It is widely believed 

that long dwell time of clicks is an important predictor of 

success. 

 

3. Goal Success: We can build two Markov models to 

compute the probability of user success and failure. The 

Markov Model includes {clicks, queries, dwell time (>30 

sec)} as states {Q, SS, SS_Long}, respectively. On the 

basis of labelled dataset, we split two Markov models. 

Given a new user task trail, we can compare the 

probability from successful and unsuccessful models and 

estimate the label of user satisfaction. For more details, 

see [10].  

By using the task success labels based on Hidden Markov 

Model, we can study the percentage of multitask sessions with 

both successful and unsuccessful tasks.  

 

B. Prediction on User Search Interests 

 

For improving ranking or personalization of search systems, user 

search interests can be captured. Previous work has taken 

advantage of queries and clicks preceding user current query as 

context to perform context-aware ranking. One of key aspect is 

to promote or demote the rank of URLs based on their 

relationship with current query’s context.  

Since queries submitted by users reflect user information needs, 

we can use queries to represent user search interests. On the 

other hand, queries are often short and ambiguous. Therefore, 

we can summarize user search interests at topic level. By taking 

previous co-session or co-task queries as context information to 

user’s current query, we can construct different context models. 

To know which context model can predict user search interests 

better, we can compare topic similarities of co-session and 

co-task query pairs. 

 

V. CONCLUSION 

The result of the analysis of user search behavior trails has 

developed to use task trail for better understanding of user search 

behaviors. We observed and found result on evaluation of the 

effectiveness of task trails in real applications. We have taken 

extensive analyses and comparisons to the effectiveness of task 

trails in several search applications: estimating user satisfaction, 

prediction on user search interests. To reduce the time 

complexity, we have also proposed clustering algorithm to 

merge similar queries into same task, which performs better than 

other approaches. We defined query, session and task trails and 

found users are more likely to find useful information following 

the task trails. 
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