
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 4 Issue 4, April 2015

ISSN: 2278 – 1323 All Rights Reserved © 2015 IJARCET

1230

UP-Growth: An Efficient Algorithm for Mining High

Utility Itemsets from Transactional Databases

Goura A Koti
1
, Prof. J.Nagesh Babu

2

M.Tech Student(CSE)1, Assistant Professor2

Department of Computer Science and Engineering

Rao Bahadur Y. Mahabaleshwar Engineering College, Bellary

Abstract—Utility mining is an emerging topic in data mining

field. The main objective of Utility Mining is to identify the

itemsets whose utility is highest than the user-specified threshold.

Mining high utility itemsets from a transactional database refers

to finding the itemsets that have utility above a user-specified

threshold. Itemset Utility Mining which is an extension of

frequent itemset mining identifies itemsets that occur frequently.

An efficient mining of high utility itemsets plays an important

role in many real-time applications such as business transaction,

retail markets, supermarket, and medical applications and it is

one of the important research issue in data mining area. Existing

algorithms like Apriori, FP Growth incur the problem of

producing a large number of candidate itemsets. Such a large

number of candidate itemsets degrades the mining performance

in terms of execution time and space requirement. The more the

transaction length that the database contains may lead to worse

case in achieving performance. In this paper, we propose an

efficient algorithm, called utility pattern growth (UP-Growth) for

mining high utility itemsets with a set of effective strategies for

pruning candidate itemsets. A tree-based data structure named

utility pattern tree (UP-Tree) is used to maintain the information

of high utility itemsets. The performance of UP-Growth is

compared with the IHUP algorithm. Experimental results show

that the proposed algorithm will reduce the number of original

database scans and generates less number of candidates which

outperforms in terms of time and space.

Index Terms—Frequent Mining, UP-Tree, UP-Growth, Utility

Mining.

I. INTRODUCTION

Today, the information has become a superabundant in all

sectors such as, from business transactions and scientific data,

to satellite pictures, text reports and military intelligence.

Though it brings huge new benefits but, it also creates big

headache. So, it is very important to handle the huge data sets

in an effective manner. Hence, Data mining is the way that

helps in discovering relevant patterns from large data sets. In

simple words, it is the process of analyzing data from different

perspectives and summarizing it into useful information. The

overall goal of the data mining process is to extract

information from a data set and transform it into an

understandable structure for further use. Aside from the raw

analysis step, it involves database and data management

aspects, data pre-processing, model and inference

considerations, interestingness metrics, complexity

considerations, post-processing of discovered structures,

visualization, and online updating. Technically, the goal is the

extraction of patterns and knowledge from large amount of

data, not the extraction of data itself.

Data mining is primarily used today by companies with a

strong consumer focus - retail, real estate, financial

transactions, banking, telecommunications and marketing

organizations. It enables these companies to determine

relationships among "internal" factors such as price, product

positioning, or staff skills, and "external" factors such as

economic indicators, competition, and customer

demographics. And, it enables them to determine the impact

on sales, customer satisfaction, and corporate profits. Finally,

it enables them to "drill down" into summary information to

view detail transactional data.

Discovering useful patterns hidden in a database plays an

essential role in several data mining tasks, such as high utility

pattern mining. Mining high utility itemsets from a

transactional database refers to the discovery of itemsets with

high utility like profits.

The following description brings the importance of utility

mining which overcomes the drawbacks of frequent itemset

and weighted association rule mining.

Frequent patterns [12] are itemsets, which appear in a data

set with frequency no less than a user-specified threshold. For

example, a set of items, such as milk and bread that appear

frequently together in a transaction data set is a frequent

itemsets. Finding frequent patterns plays an essential role in

mining associations, correlations, and many other interesting

relationships among data. Frequent pattern mining helps in

data indexing, classification, clustering, and other data mining

tasks such as mining association rules [3]. The applications of

this kind of mining are in the field of telecommunications, text

analysis and census analysis. The interestingness metric used

to express the frequency of itemsets is in terms of support

value of the itemsets. The Support value of an itemset is the

percentage of transactions that contain the itemset.

Problem: In the framework of frequent itemset mining, the

importance of items to users is not considered.

Weighted association [8] rule mining approach is an

extension of the traditional association rule mining [3] to

which the weights are assigned to the items based on their

significance. A weight of an item is a non negative real

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 4 Issue 4, April 2015

ISSN: 2278 – 1323 All Rights Reserved © 2015 IJARCET

1231

number that shows the importance of each item. A pair (x, w)

is called a weighted item where x ∈ I is an item and w ∈ W is

the weight associated with x. A transaction is a set of weighted

items, each of which may appear in multiple transactions with

different weights.

Problem: Assigning weight for each item, based on its

significance and generating the association rules for large

itemsets that have above the user specified minimum weighted

confidence.

The limitations of frequent or rare itemset mining motivated

to develop a utility based mining [9] approach, which allows a

user to conveniently express his or her perspectives

concerning the usefulness of itemsets as utility values and then

find itemsets with high utility values higher than a user-

specified threshold. In utility based mining, the term utility

refers to the quantitative representation of user preference i.e.,

the utility value of an itemset is the measurement of the

importance of that itemset in the user’s perspective. For e.g. if

a sales analyst involved in some retail research needs to find

out which itemsets in the stores earn the maximum sales

revenue for the stores he or she will define the utility of any

itemset as the monetary profit that the store earns by selling

each unit of that itemset.

Formally an item set S is useful to a user if it satisfies a

utility constraint i.e. any constraint in the form u(S) >=

minutil, is useful to a user where u(S) is the utility value of the

itemset and minutil is a utility threshold defined by the user.

An itemset is called a high utility itemset if its utility is no less

than a user specified threshold; otherwise, the itemset is called

a low utility itemset.

Existing methods [3, 5, and 7] often generate a huge set of

high utility itemsets and the mining performance is degraded

consequently. The case when the database contains many long

transactions will be the worst. The huge number of potential

high utility itemsets forms a challenging problem to the

mining performance since the higher processing cost is

incurred with more number of potential high utility itemsets.

Thus, the main aim of our proposed algorithm is to reduce the

number of candidate itemsets.

To achieve this, we propose an efficient algorithm, called

UP-Growth (Utility Pattern Growth) with a compact data

structure called UP-Tree for discovering high utility itemsets.

II. RELATED WORK

A. Definitions

Here we are discussing some basic definitions about utility

of an item, utility of itemset in transaction, utility of itemset in

database, related works and the problem involved in the

existing methods.

Given a finite set of items I = { i1, i2, …. im } each item ip

(1 ≤ p ≤ m) has a unit profit pr(ip) An itemset X is a set of k

distinct items { i1, i2, …. ik}, where k is the length of X. An

itemset with length k is called a k-itemset. A transaction

database D = {T1, T2,…, Tn } contains a set of transactions,

and each transaction Td has a unique identifier d, called TID.

Each item ip in transaction Td is associated with a quantity q

(ip, Td) that is, the purchased quantity of ip in Td.

Definition 1:

Utility of an item ip in a transaction Td is the product of unit

profit and the purchased quantity. It is denoted as u (ip, Td) and

defined as pr (ip, Td) ×q (ip, Td)

Definition 2:

Utility of an itemset X in Td is the sum of utilities of the

transaction containing X. It is denoted as U(X, Td) and defined

as ∑ipƐX˄X⊆ Td u (ip, Td)

Definition 3:

Utility of an itemset X in D is the sum of utilities of all the

transactions containing X in the database D. It is denoted as

u(X) and ∑X⊆Td∧TdƐD u(X, Td).

Definition 4:

An itemset is called a high utility itemset if its utility is no less

than a user-specified minimum utility threshold or else it is

low-utility itemset.

Definition 5:

Transaction utility of a transaction Td is the sum of utilities of

all the items in the transaction Td. It is denoted as TU (Td) and

defined as u(Td, Td)

Definition 6:

Transaction-weighted utility of an itemset X is the sum of the

transaction utilities of all the transactions containing X, which

is denoted as TWU(X) and defined as ∑X⊆Td∧TdƐD TU (Td)

Definition 7:

An itemset X is called a high-transaction weighted utility

itemset (HTWUI) if TWU(X) is no less than minimum utility

threshold.

B. Literature Survey

The paper [3] proposed Apriori algorithm, is used to obtain

frequent itemsets from the database. This algorithm simply

counts item occurrences to further determine the large one

itemsets which requires scanning of database each time for

each item. Next, the database scan is performed to count the

support of candidate’s itemsets. Then the association rules are

generated from frequent itemsets. After identifying the large

itemsets, only those itemsets which have the support greater

than the minimum support are allowed.

Drawback: It generates a lot of candidate item sets and scans

database every time and when a new transaction is added to

the database then it should rescan the entire database again.

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 4 Issue 4, April 2015

ISSN: 2278 – 1323 All Rights Reserved © 2015 IJARCET

1232

The paper [5] proposed an efficient FP-tree based mining

method that builds frequent pattern tree (FP-tree) structure, for

storing crucial information about frequent patterns into

compressed structure. Pattern fragment growth mines the

complete set of frequent patterns using the FP-growth. It

constructs a highly compact FP-tree, which is usually

substantially smaller than the original database, by which

costly database scans are saved in the subsequent mining

processes. It applies a pattern growth method which avoids

costly candidate generation.

Drawback: FP-Growth Consumes more memory and performs

badly with long pattern data sets. Thus it is not able to find

high utility itemsets.

The paper [6] proposed Two-Phase algorithm to efficiently

prune down the number of candidates and can precisely obtain

the complete set of high utility itemsets. In Phase I, High

transaction-weighted utilization itemsets (HTWUIs) are

identified. The size of candidate set is reduced by only

considering the supersets of high transaction-weighted

utilization itemsets. In Phase II, one database scan is

performed to filter out the high transaction-weighted

utilization itemsets that are indeed low utility itemsets.

Drawback: It generates numerous candidates to obtain

HTWUIs and requires multiple database scans.

Traditional methods of association rule mining consider the

appearance of an item in a transaction, whether or not it is

purchased, as a binary variable. However, customers may

purchase more than one of the same item, and the unit cost

may vary among items. Hence, developing an

efficient algorithm is crucial for utility mining.

To overcome this problem, the paper [7] proposed isolated

items discarding strategy (IIDS) to reduce the number of

candidates. By pruning isolated items during level wise

search, the number of candidate itemsets for HTWUIs in

phase one can be reduced.

Drawback: This algorithm still scans database for several

times and uses a candidate generation-and-test scheme to find

high utility itemsets and thus cannot improved performance.

The paper [2] proposed a tree-based algorithm, named

Incremental High Utility Pattern (IHUP). A tree based

structure called IHUP-Tree is used to maintain the information

about itemsets and their utilities.

Drawback: Though it achieves a better performance than IIDS

and Two-Phase, it still produces several HTWUIs. Since the

overestimated utility calculated by TWU is too large.

C. Problem Statement

In the literature we have studied the different methods

proposed for high utility mining from large datasets. But all

this methods frequently generate a huge set of PHUIs and their

mining performance is degraded consequently. Further in case

of long transactions in dataset or low thresholds are set, then

this condition may become worst. The huge number of PHUIs

forms a challenging problem to the mining performance since

the more PHUIs the algorithm generates, the higher processing

time it consumes. Thus to overcome this challenges the

efficient algorithm is presented in this paper.

The main aim of this project is to achieve the following

aspects:

 Reducing the number of scans in the original database.

 Minimize memory utilization (Reducing the search space).

 Reducing the total execution and computation time.

 Reducing the resource utilization.

 Increase the performance in terms of time and space

complexity.

III. PROPOSED WORK

The proposed method consists of three main parts: 1)

Construction of global UP-tree with two strategies (DGU and

DGN) by scanning the database twice. 2) Generating the

potential high utility itemsets using UP Growth with two

strategies (DLU and DLN) 3) from the set of PHUIs identify

actual high utility item set.

A. Construction of UP-Tree

To avoid repeated scanning of original database, the UP-

tree data structure is maintained to keep track of the

information of the transaction and high utility itemsets. In a

UP-Tree, each node has its own detailed information such as

node’s item name, support count, parent name, node link to

which it points to a node and a set of child nodes. The UP-

Tree maintains a table named Header Table to facilitate the

traversal of tree. In header table, each entry records an item

name, an overestimated utility, and a link.

The construction of a global UP-Tree is performed with two

database scans. In the first scan, each transaction’s TU is

computed; at the same time, each 1- item’s TWU is also

accumulated. Thus we can get promising items and

unpromising items. The transactions are inserted into a UP-

Tree in the second scan. When a transaction is retrieved, the

unpromising items are removed from the transaction and their

utilities are also eliminated from the transaction’s TU. Thus,

new TU are calculated after pruning unpromising items which

are called reorganized transaction utility (abbreviated as

RTU). Then, Reorganized Transactions will be constructed

with the RTU.

Thus, Strategy DGU (Discarding Global Unpromising

Items during Constructing a Global UP-Tree) states discard

global unpromising items and their actual utilities from

transactions and transaction utilities of the database.

Definition 8: An item whose TWU is less than minimum

utility threshold is said to be unpromising item.

Definition 9: An unpromising item and all its supersets are not

high utility itemsets. In other words, only the supersets of

promising items are possible to be high utility itemsets.

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 4 Issue 4, April 2015

ISSN: 2278 – 1323 All Rights Reserved © 2015 IJARCET

1233

Since unpromising items play no role in high utility

itemsets, these items are removed. Thus, when utilities of

itemsets are being estimated, utilities of unpromising items

can be regarded as irrelevant and be discarded.

This makes to store less information in UP-Tree and also

smaller overestimated utilities for item sets are generated.

Strategy DGU uses RTU to overestimate the utilities of item

sets instead of TWU. Since the utilities of unpromising items

are excluded, RTU will be no larger than TWU. Therefore, the

number of PHUIs with DGU will be no more than that of

HTWUIs generated with TWU. DGU is quite effective

especially when transactions contain lots of unpromising

items.

It is possible to apply the divide-and-conquer technique in

tree-based framework for high utility item set mining

processes. Thus, the search space can be divided into smaller

subspaces. The items that are descendant nodes of the item im

will not appear in {im}-Tree; only the items that are ancestor

nodes of im will appear in {im}-Tree. From this viewpoint, our

second proposed strategy for decreasing overestimated utilities

is to remove the utilities of descendant nodes from their node

utilities in global UP-Tree.

Thus, Strategy DGN (Decreasing Global Node Utilities

during Constructing a Global UP-Tree) states decrease the

global node utilities for the nodes of global UP-Tree by actual

utilities of descendant nodes. DGN is especially suitable for

the databases containing lots of long transactions. In other

words, the more items a transaction contains, the more utilities

can be discarded by DGN.

By applying these two strategies, the overestimated utilities

stored in the nodes of global UP-Tree are minimized.

B. UP-Growth

Once after the construction of a global UP-Tree, the next

step is to mine UP-Tree for generating PHUIs. Thus, we

propose an algorithm UP-Growth (Utility Pattern Growth)

which has two strategies namely, Discarding Local

Unpromising Items (DLU) and Decreasing Local Node

Utilities (DLN).

The common method for generating patterns in tree based

algorithms contains three steps: (1) Generate conditional

pattern bases by tracing the paths in the original tree, (2)

construct conditional trees (also called local trees in this

paper) by the information in conditional pattern bases and (3)

mine patterns from the conditional trees. For the two

strategies, we maintain a minimum item utility table to keep

minimum item utilities for all global promising items in the

database.

First, the node links in UP-Tree corresponding to the item

im, which is the bottom entry in header table, are traced. Found

nodes are traced to root of the UP-Tree to get paths related to

im. All retrieved paths, their path utilities and support counts

are collected into im’s conditional pattern base. A conditional

UP-Tree can be constructed by two scans of a conditional

pattern base. For the first scan, local promising and

unpromising items are learned by summing the path utility for

each item in the conditional pattern base. Then, DLU is

applied to reduce overestimated utilities during the second

scan of the conditional pattern base.

The Strategy DLU (Discarding Local Unpromising Items

during Constructing a Local UP-Tree) states discard the

local unpromising items and their estimated utilities from the

paths and path utilities of conditional pattern bases

The paths are reorganized by pruning unpromising items by

DLU and resorted by a fixed order. The paths are called

reorganized paths. Then, the node utility is recalculated for the

node Nik in {im}-Tree. DLN is local version of DGN and is

applied during inserting reorganized paths into a conditional

UP-Tree.

The Strategy DLN (Decreasing Local Node Utilities

during Constructing a Local UP-Tree) states decreasing

Local Node utilities for the nodes of local UP-Tree by

estimated utilities of descendant nodes.

By these strategies, overestimated utilities of item sets can

be decreased and thus the number of PHUIs can be further

reduced.

C. Efficiently identify High Utility Itemsets

The next step is to identify high utility itemsets and their

utilities from the set of candidate itemsets by scanning original

database once. But scanning original database is still time

consuming since the original database is large and it contains

lots of unpromising items. Thus, in the proposed work, high

utility itemsets are identified by scanning reorganized

transactions. Since there is no unpromising item in the

reorganized transactions, the I/O cost and execution time for

this process can be further reduced. This technique works well

especially when the original database contains lots of

unpromising items.

IV. EXPERIMENTAL EVALUATION AND PERFORMANCE

STUDY

This section describes the experimental environment and

the performance of the proposed algorithm with different

parameters compared to the IHUP algorithm. This algorithm is

implemented in java language. The software tool used is

NetBeans IDE 8.0.

A. Experimental Environment

In order to show the performance of proposed UP-Growth

algorithm, we compare with the IHUP algorithm. Here we

assume a simple transaction database with few items and

transactions.

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 4 Issue 4, April 2015

ISSN: 2278 – 1323 All Rights Reserved © 2015 IJARCET

1234

B. Results

For varying user-specified utility threshold, the graphs

below shows the number of candidates generated, time taken

for execution and the memory usage for existing and proposed

algorithm. The varying minimum utility threshold set with the

values 5, 10, 15,20,25,30 and 35.

Figure 1: Minimum utility versus number of candidates

The figure 1 shows that the proposed UP-Growth algorithm

generates less number of candidate items compared to IHUP

algorithm due to pruning of itemsets with the efficient

strategies.

Figure 2: Minimum utility versus Execution Time

The figure 2 shows that the proposed UP-Growth algorithm

consumes less time to find the high utility itemsets compared

to IHUP algorithm due to less number of candidate items and

scanning the reorganized transactions which has no

unpromising items, instead of scanning the large database.

Figure 3: Minimum utility versus Memory Usage

The figure 3 shows that the proposed UP-Growth algorithm

consumes less memory compared to IHUP algorithm due to

less number of candidates generated and require no scanning

of original database regularly.

V. CONCLUSION

The main problems with the existing methods are the

generation a huge set of candidate items and scanning of the

original database several times. Hence, the proposed algorithm

ensures that it generates a few candidate items with only two

scans. From the above experimental results, we can conclude

that the proposed algorithm can efficiently find the high utility

itemsets with the four strategies (DGU, DGN, DLU, and

DLN) developed in this paper. Since the algorithm generates

few candidate items, it takes less time to find the high utility

itemsets. And also the memory consumed is less compared to

the existing algorithms. Thus, pruning the itemsets very well

at early stages saves the time as well as space.

VI. REFERENCE

[1] Vincent S. Tseng, Bai-En Shie, Cheng-Wei Wu, and Philip S. Yu,

Fellow,” Efficient Algorithms for Mining High Utility Itemsets from

Transactional Databases”, IEEE Transaction on knowledge and data

engineering, vol. 25, no. 8, Aug 2013.

[2] C.F. Ahmed, S.K. Tanbeer, B.-S. Jeong, and Y.-K. Lee, “Efficient

Tree Structures for High Utility Pattern Mining in Incremental

Databases”, IEEE Trans. Knowledge and Data Eng., vol. 21, no. 12,

pp. 1708-1721, Dec. 2009

[3] R. Agrawal , T. Imielinski, A. Swami, 1993, mining association

rules between sets of items in large databases, in: proceedings of the

ACM SIGMOD International Conference on Management of data,

pp. 207-216

[4] R. Agrawal, R Srikant, Fast algorithms for mining association

rules,in : Proceedings of 20th international Conference on Very Large

Databases ,Santiago, Chile, 1994, pp.487-499

[5] J Han, J.Pei, Y.Yin ,R. Mao Mining frequent Patterns without

candidate generation:a frequent -pattern tree approach , Data Mining

and Knowledge Discovery 8(1)(2004) 53-87

[6] Liu. Y, Liao. W,A. Choudhary, A fast high utility itemsets mining

algorithm, in: Proceedings of the Utility-Based Data Mining

Workshp, August 2005

[7] Y.-C. Li, J.-S. Yeh, and C.-C. Chang, “Isolated Items Discarding

Strategy for Discovering High Utility Itemsets,” Data and Knowledge

Eng., vol. 64, no. 1, Jan. 2008.

[8] C.H. Cai, A.W.C. Fu, C.H. Cheng, and W.W. Kwong, “Mining

Association Rules with Weighted Items,” Proc. Int’l Database Eng.

and Applications Symp. (IDEAS ’98), 1998.

[9] R. Chan, Q. Yang, and Y. Shen, “Mining High Utility Itemsets,”

Proc. IEEE Third Int’l Conf. Data Mining, pp. 19-26, Nov. 2003.

[10] V.S. Tseng, C.-W. Wu, B.-E. Shie, and P.S. Yu, “UP-Growth:

An Efficient Algorithm for High Utility Itemsets Mining,” Proc. 16th

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 4 Issue 4, April 2015

ISSN: 2278 – 1323 All Rights Reserved © 2015 IJARCET

1235

ACM SIGKDD Conf. Knowledge Discovery and Data Mining (KDD

’10), 2010.

[11] H. Yao, H.J. Hamilton, and L. Geng, “A Unified Framework for

Utility-Based Measures for Mining Itemsets,” Proc. ACM SIGKDD

Second Workshop Utility-Based Data Mining, Aug. 2006.

[12] Jiawei Han, Hong Cheng, Dong Xin and Xifeng Yan, “Frequent

pattern mining: current status and future directions,” Data Mining

Knowledge Discovery, January 2007

