
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 4 Issue 4, April 2015

1225
ISSN: 2278 – 1323 All Rights Reserved © 2015 IJARCET

Data PathDesign using FPGA
ShivashankarTonape

1
, Shradha Joshi

2

Department of Electronics & TelecommunicationEngineering,

NageshKarajagi Orchid College of Engineering&Technology,

Solapur, Maharashtra, India.

Abstract- The widely used tool for the cost reduction and the

technological innovations is the use of the data path. The

speed of the data path and its programmability are the

microprocessor’s main performance characteristics.

Therefore, for competitively designing a data path, its

processor (consists an advantages) requires the

characteristics, such as faster, adaptable, relatively

inexpensive, flexible, & reconfigurable. The use of the FPGAs

(Field Programmable Gate Array)as a design tool is a

solution to this.The importance for the FPGA based

embedded applications, till today, increases very greatly. By

using FPGA, the end user can achieve the benefits of the

system-on-chip (SoC) by configuring the processor as per his

requirement, by implementing the required logic on FPGA

fabric core.With a data path, SoC system requires an FPGA.

‘Hard’ processoris a hybrid approach added to the FPGA,

offers a performance trade-offs between FPGA and the

traditional ASIC. ‘Soft’ core uses the programmable logic

element which can be existed in the FPGA for implementing

the data path logic. The data path has been specifically

designed to be small to reduce the consumption of power and

extend the operations and life of the battery. In this paper, a

subset of the MIPS Instruction will be implemented, to use

for different applications. A single cycle data path with a 32-

bit instruction of selected instruction set and the random

logic based instruction decoder has been implemented. The

main block of the data path would be the ALU, register file,

program counter updating logic, multiplexer, adder. For

synthesis & simulation,Xilinx ISE 9.2i software is used.

Keywords:FPGA, SoC, Data path, ALU, MIPS.

 I. INTRODUCTION

The hardware system required for the embedded data

pathsfor better communication services, nowadays, need to

be develop with afast performance, lower power and multi-

tasking. So, most of the data path (processor) developers

and designers are used a data path based methodology.

Generally athousands of electronic components consists by

data path and use a various machine instructions to

perform not only the mathematical operations but also to

move the information from one memory location to

another memory location [3].

Thedata path processor, till now, has been playing a major

role in the embedded system, which iswidely used in a

variety of the electronic products such as mobile phones,

robots, personal computers due to its power saving

features. For performance and area, the low power has

become an important consideration [1][9]. RISC uses a

minimal set of instructions, emphasizing the instructions

used most often and optimizing them for the fastest

possible execution. This data path implementation will

follows the RISC Instruction set architecture because it

supports a predefined set of instructions.RISC processors

are less costly for designing, testing and manufacturing.

Because the RISC processors have advantages in many

applications that benefits from the faster instruction

executions[4].

Also due to the exponential increase of the technologies,

many problems are faced by designers for requirement of

the fast, flexible and many re-programmable devices.

So,because of various advantages such as flexible, real-

time in-circuit re-configurability, programmable and

reliable, there is one option to design a data path using an

FPGA [11].

II. COPROCESSOR DESIGN PHILOSOPHY

The Data Path offers very low power consumption and

price for high performance devices, whichis a part of the

RISC Machine code of general purpose 32-bit

microprocessor. The architecture is based on Reduced

Instruction Set Computer (RISC) principles, and the

instruction set and related decode mechanism are much

simpler in comparison with micro-programmed Complex

Instruction Set Computers (CISC). This results in a high

instruction throughput and impressive real-time interrupt

response from a small and cost-effective chip.The Data

Path is generally used in different applications or

customer-specific integrated circuits (ASICs or CSICs).

It‟s simple, elegant and fully static design is particularly

suitable for cost and power-sensitive applications. It‟s

small die size makes it ideal for integrating into a larger

custom chip that could also contain RAM, ROM, logic,

DSP and other cells [1].But due to the cost of ASIC design

and the speed of the DSPs processors which is involved in

the development of the flexible, faster devices, many

designers are now turning to FPGA based designs.

Today Data Path processors are gaining importance for

FPGA based embedded applications. By using FPGA, the

end user can achieve the benefits of the system-on-chip

(SoC) by configuring the processor as per his requirement,

by implementing the required logic on FPGA fabric core.

With a processor core, SoC system requires an

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 4 Issue 4, April 2015

1226
ISSN: 2278 – 1323 All Rights Reserved © 2015 IJARCET

FPGA.Processor cores are classified as either “hard” or

“soft” [2].

 III. PROPOSED SYSTEM

 A Data Path is designed using an RISC processor which

used the pipelined architecture [4]. In order to design a

data path, first examine the sequence of operations during

execution of instructions, and then describe the nature of

the hardware required to accomplish the instruction

execution. In general, any processor or data path works in

the following 4-stages:

1. Fetch

2. Decode

3. Execute

4. Memory Read/ Write Back.

Hence, the design must contain a unit to fetch the

instructions, a unit to decode the instructions, the

arithmetic and logic unit (ALU) to execute the instruction,

a register file to hold the operands, and the memory that

stores instructions and data [6].

The proposed architecture is a general-purpose RISC

processor with pipelining feature. It gets instructions from

the dedicated buses to its memory regularly, then executes

all its native instructions in stages with pipelining.There

are basically three types of instruction formats namely

Arithmetic and Logical instructions, Load/Store

instructions and Branch instructions[7].

1. ALU Instructions:

Arithmetic operations can either take two registers as

operands or take one register and a sign extended

immediate value as an operand. And the result is stored in

the third register. Logical operations do not usually

differentiate between the 32-bit or 64-bit. Some of the

ALU instructions are ADD, SUB, MUL, AND, OR,

NAND, NOR, XOR, NOT, etc.

2. Load/Store Instructions:

Load/Store instructions usually take a register as an

operand and a 16-bit immediate value. The sum of the two

will create the effective address. A second register acts as a

source in the case of a load operation. In the store

operation the second register contains the data to be stored.

Some instructions are LW, SW, etc.

3. Branch Instructions:

Branches and Jumps Conditional branches are transfer of

control. A branch causes an immediate value to be added

to the current program counter. Some common branch

instructions are BZ (Branch Zero), BRZ (Branch Register

Zero), JMP (Jump Instruction), JMPZ (Jump when Zero),

etc.

IV. ARCHITECTURE

1) Over view of Design:

It is of great concern to build Data Path block in the

context of FPGA basedSoC applications. A subset of

MIPS instructions will be implemented to cater for

different applications. A selected set of 32 bit instructions

will be implemented with a single cycle data path and

random logic based instruction decoder. A data path design

based on a FPGA consists of several unit blocks. This unit

blocks can be classified in following manner. In this

architecture design, the main components are: an

Arithmetic Logic unit (ALU) and Register File. And the

sub-components are: a program counter, an instruction

register, a data register, multiplexers (MUX), adders, etc

[8][9][10].

2) Data path:

A data path is a central part of the many central processing

units along with control units, which largely regulates

interaction between the data path and the data itself,

usually stored in registers or main memory. Data path is

the heart of the processor. It is a collection of the

functional units, such as register file, ALU, mux, program

counter updating logic and controller that perform the data

processing operations. It is the module which helps to form

an instruction set to any function.

The following figure shows the overall data path unit.

 Data path

o Register File

o ALU

o Multiplexer

o Adder

Figure 1: Overall Data path architecture

2.1) Register File:

A register file is an array of processor registers in a central

processing unit (CPU). Register file is a combination of

registers and combinational logic. The register file is the

highest level of the memory hierarchy. In a very simple

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 4 Issue 4, April 2015

1227
ISSN: 2278 – 1323 All Rights Reserved © 2015 IJARCET

processor, it consists of a single memory location, usually

called an accumulator. In a modern processor, it is

considered necessary to have at least 32 registers for

integer value and often 32 floating-point registers as well.

Thus the register file is a small, addressable memory at the

top of the memory hierarchy. It is visible to programs, so

that the number and type of registers is a part of the

instruction set architecture (ISA).

A modern processor will have at least 32 integer registers,

each capable of storing a word of 32 bits. A processor with

floating-point capabilities will generally also provide 32 or

more floating-point registers, each capable of holding a

double precision floating-point word. These registers are

used by programs as temporary storage for values which

will be needed for calculations. Because the registers are

„closest‟ to the processor in terms of access time, able to

supply a value within a single clock cycle. Thus the size of

the register file is an important factor in the overall speeds

of programs.

 Figure 2: Register File

A register file needs at least 2 read ports: the ALU has two

input ports and it may be necessary to supply both of its

inputs from the same register.

2.2) Arithmetic Logic Unit:

An ALU is a combinational network that implements a

function of its input based on either logic or arithmetic

operations. ALU‟s are the heart of all computers as well as

most digital hardware systems. An ALU is constructed by

using the four hardware building blocks (AND & OR

Gates, Inverters and multiplexers). Generally, the MIPS

word is 32 bits wide. An n-bit ALU typically has two input

words and the one output word, where the high order

output bit is actually the carry-out. In addition, there is a

carry-in input. Besides data inputs and outputs, an ALU

must have control inputs to specify the operations to be

performed. One input is a mode selector, which determines

the operation is a logic function or arithmetic operations.

In addition, there are operation selection input, which

determines the particular logic or arithmetic function to be

performed.

Figure 3: Arithmetic & Logic unit

2.3) Multiplexer:

A multiplexer is a combinational circuit and can be

modeled using concurrent statements only or using

processes. A multiplexer is a circuit that generates an

output that exactly reflects the state of one of a number of

data inputs, based on the value of one or more selection

control inputs. A multiplexer circuit “multiplexes” the

input signals onto a single output. The data input is

selected by the values of the select inputs. The select input

chooses as the output of the multiplexer either one of the

data input.

Figure 4: Multiplexer unit

2.4) Adder:

A simple manner to construct an adder is to build a ripple-

carry adder. In this adder, 32 copies of a 1 bit full adder are

connected in succession to create the 32 bit adder. The

carry ripples from the least significant bit to the most

significant bit. If gate delays are tg, a 1 bit adder delay is

2tg (assuming a Sum-of-Products expression for Sum and

Carry, And ignoring delay for inverters), and a 32 bit

ripple carry-adder will take approximately 64 gate delays.

This is inadequate for many applications. Hence, designers

often resort to faster adders.

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 4 Issue 4, April 2015

1228
ISSN: 2278 – 1323 All Rights Reserved © 2015 IJARCET

 Figure 5: Adder unit

4) Memory:

 A memory could be generally used for storing a table of

constants to be used as coefficients during processing, or it

could be for implementing instruction and data memories

for an embedded processor that are designed using FPGA.

The memory is typically implemented using a few large

blocks of Static RAM (SRAM). Our memory module is

32-bit wide. The instruction memory is implemented as a

single port on-chip distributed ROM while the date

memory is implemented as a single port on-chip block

RAM inside the FPGA. SRAM cells are combined in an

array with additional control logic to form a static RAM

for a 32X32 SRAM. While in a ROM, a decoder on the

address lines selects a specific row of SRAM to be

accessed at any time. Once the row is decided, 32-bit data

is written in the 32 SRAM or read 32-bit data to next

component.

The data memory stores ALU results and operands,

including instructions, and has two enabling inputs

(MemWrite and MemRead) that cannot both be active

(have a logical high value) at the same time. The data

memory accepts an address and either accepts data

(WriteData port if MemWrite is enabled) or outputs data

(ReadData port if MemRead is enabled), at the indicated

address.

V. IMPLEMENTATION & RESULTS

To ensure the performance and the quality of our design,

all of the units are designed and tested separately. Xilinx

ISE 9.2i is used for simulation of the FPGA based code

and results have been verified. Once the functionality of

each of the units is verified, then they are combined

together as a block and once again tested.

1. Arithmetic & logic unit:

In this waveform, the various ALU functions are

observed. In ALU, according to the ALU Operation,

many kinds of operations of the arithmetic and logical

functions can be performed.

Figure 6: Simulation result of ALU

2. Multiplexer:

 The various MUX functions are performed in this

waveform. The Mux output is dependent upon the mux‟s

select input which can be either „0‟ or „1‟.

 Figure 7: Simulation Result of Multiplexer

3. Register File:

The waveform of register file is shown below.

 Figure 8: Simulation Result of Register File

4. Data path:

 The data path & controller output waveform is shown

below. This output is coming according to the instructions

given by the Controller & ROM.

Figure 9: Simulation result of Data path

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 4 Issue 4, April 2015

1229
ISSN: 2278 – 1323 All Rights Reserved © 2015 IJARCET

VI. CONCLUSION& FUTURE SCOPE

 A simple implementation of a subset of the 32-bit data

path block has been done in this paper. This instruction

subset includes most of the important instructions,

including ALU, memory access, and branch instructions.

For the sake of simplicity, the proposed architecture is

designed for preventing the pipelining structure from the

branch instructions. This architecture emphasizes

simplicity and excludes instructions that could take longer

than the most common instructions.

 In this paper, the data path is designed by using an FPGA.

So, the required instruction subset for this data path is

implemented by writing the codes in the VHDL language.

The design contains a single cycle pipelining architecture.

This can be further implemented with multi-cycle

instruction set and also with better hardware design for

faster speeds and high performance. The data path can be

used for various different processor applications such as

medical applications, industry application, etc.

ACKNOWLEDGMENT

 This paper work is undertaking and supported by the

NK‟s Orchid College of Engineering & Technology,

Solapur. We are very thankful of the our friends,

supporters &the Department of Electronics &

Telecommunication, NKOCET, Solapur University,

Solapur for their constant guidance, support &

encouragement in undertaking the work very prosperly.

REFERENCES

[1] E. Ayeh, K. Agbedanu, Y. Morita, O. Adamo, P.

Guturu “FPGA implementation ofan 8 bit Simple

Processor” IEEE 978-1, 2008.

[2] J. O. Hamblen, T. S. Hall “Using System-on-a

Programmable-Chip Technology to DesignEmbedded

Systems” IJCA, Vol. 13, No. 3, Sept. 2006.pp 1-11.

[3] Geun-young Jeong“Design of 32-bit RISC processor

andefficient verification”Proceedings of the 7th

Korea-Russia International Symposium. KORUS2003,

PP 222-227.

[4] ShebliAnvar, Olivier Gachelin, et al. “FPGA-based

System-on-Chip Designs for Real-Time Applications

inParticlePhysics” 14th IEEE Real Time Conference,

Stockholm, Sweden, June 6-10, 2005 pp 1-5.

[5] Kane , Gerry, “MIPS RISCArchitecture”, Upper

Saddle River, N. J.: Prentice Hall, 1989.

[6] Stephen Brown and ZvonkoVranesic, “Fundamentals

ofDigital Logic with VHDL Design”,2
nd

 edition, New

York: McGraw-Hill, 2005.

[7] Maxfield, Clive, “ The Design Warrior's Guide to

FPGAs: Devices, Tools and Flows”, Elsevier. p. 4,

ISBN 978-0-7506-7604-5.

[8] Nass, Rich, EETimes, "Xilinx puts ARM core into its

FPGAs", April 27, 2010.

