(2, (c₁, c₂))-Regular Intuitionistic Fuzzy Graphs

S. Ravi Narayanan, N.R. Santhi Maheswari

Abstract—In this paper \(d_2 \) - degree of a vertex and total \(d_2 \) -degree of a vertex in an intuitionistic fuzzy graphs are defined. Also \((2, (c_1, c_2)) \)-regularity and totally \((2, (c_1, c_2)) \)-regularity of an intuitionistic fuzzy graphs are defined. A relation between \((2, (c_1, c_2)) \)-regularity and totally \((2, (c_1, c_2)) \)-regularity on intuitionistic fuzzy graph is studied. \((2, (c_1, c_2)) \)-regularity on a path on four vertices, a Barbell graph \(B_{m,n} \) \((n>1)\) and a cycle \(C_n \) are studied with some specific membership functions.

Index Terms— degree of a vertex in an intuitionistic fuzzy graph, regular intuitionistic fuzzy graph, intuitionistic fuzzy graph, total degree, totally regular intuitionistic fuzzy graph, \(d_2 \)-degree of a vertex in fuzzy graph, semiregular graphs.

AMS Subject Classification: 05C12, 03E72, 05C72.

INTRODUCTION

In 1965, Lofti A. Zadeh [15] introduced the concept of fuzzy subset of a set as method of representing the phenomena of uncertainty in real life situation. K.T.Attanassov [3] introduced the concept of intuitionistic fuzzy sets as a generalization of fuzzy sets. K.T.Attanassov added a new component(which determines the degree of non-membership) in the definition of fuzzy set. The fuzzy sets give the degree of membership of an element in a given set (and the non-membership degree equals one minus the degree of membership), while intuitionistic fuzzy sets give both a degree of membership and a degree of non-membership which are more-or-less independent from each other, the only requirement is that the sum of these two degrees is not greater than one. Intuitionistic fuzzy sets have been applied in a wide variety of fields including computer science, engineering, mathematics, medicine, chemistry and economics [3, 4].

N.R.Santhy Maheswari and C.Sekar introduced \(d_2 \) -degree of vertex in fuzzy graphs and introduced \((2, k) \)-regular fuzzy graphs and totally \((2, k) \)-regular fuzzy graphs[13]. Also, they introduced \(d_m \)-degree, total \(d_m \)-degree of a vertex in fuzzy graphs and introduced an \(m \)-neighbourly irregular fuzzy graphs [14]. S. Ravinarayanan and N.R. Santhy Maheswari introduced \((2, (c_1, c_2)) \)-regular bipolar fuzzy graphs[10].These motivates us to introduce \(d_2 \) -degree, total \(d_2 \)-degree of a vertex in an intuitionistic fuzzy graph and discussed some properties.

2 Preliminaries

We present some known definitions related to fuzzy graphs and intuitionistic fuzzy graphs for ready reference to go through the work presented in this paper.

Manuscript received Dec, 2015

S. Ravi Narayanan, Department of Mathematics, Sri S. Ramaassamy Naidu Memorial College, Sattur, Tamil Nadu India

N.R. Santhi Maheswari, Department of Mathematics, G. Venkataswamy Naidu College, Sattur, Tamil Nadu, India

ISSN: 2278 – 1323 All Rights Reserved © 2015 IJARCET
Definition 2.1. A fuzzy graph \(G : (\sigma, \mu) \) is a pair of functions \((\sigma, \mu)\), where \(\sigma : V \rightarrow [0, 1] \) is a fuzzy subset of a non-empty set \(V\) and \(\mu : V \times V \rightarrow [0, 1] \) is a symmetric fuzzy relation on \(\sigma\) such that for all \(u, v \in V\), the relation \(\mu(u, v) \leq \sigma(u) \land \sigma(v)\) is satisfied. A fuzzy graph \(G\) is called complete fuzzy graph if the relation \(\mu(u, v) = \sigma(u) \land \sigma(v)\) is satisfied[6].

Definition 2.2. Let \(G : (\sigma, \mu) \) be a fuzzy graph. The \(d_m\)-degree of a vertex \(u\) in \(G\) is \(d_m(u) = \sum \mu^m(uv), \) where \(\mu^m(uv) = \sup \{\mu(uu_1) \land \mu(u_1u_2) \land \ldots \} \land \mu(u_{m-1}v) : u, u_1, u_2, \ldots, u_{m-1}, v \) is the shortest path connecting \(u\) and \(v\) of length \(m\). Also, \(\mu(uv) = 0, \) for \(uv\) not in \(E[14].\)

Definition 2.3. Let \(G : (\sigma, \mu) \) be a fuzzy graph on \(G^* : (V,E)\). The total \(d_m\)-degree of a vertex \(u \in V\) is defined as \(t_{d_m}(u) = \sum \mu^m(uv) + \sigma(u) = d_m(u) + \sigma(u)/[14].\)

Definition 2.4. If each vertex of \(G\) has the same \(d_m\)-degree \(k\), then \(G\) is said to be an \((m,k)\)-regular fuzzy graph[14].

Definition 2.5. If each vertex of \(G\) has the same total \(d_m\)-degree \(k\), then \(G\) is said to be totally \((m,k)\)-regular fuzzy graph[14].

Definition 2.6. An intuitionistic fuzzy graph with underlying set \(V\) is defined to be a pair \(G = (V,E)\) where
(i) \(V = \{v_1, v_2, v_3 \ldots v_n\}\) such that \(\mu_1 : V \rightarrow [0, 1]\) and \(\gamma_1 : V \rightarrow [0, 1]\) denote the degree of membership and non-membership of the element \(v_i \in V\).
(ii) \(E \subseteq V\) where \(\mu_2 : V \times V \rightarrow [0, 1]\) and \(\gamma_2 : V \times V \rightarrow [0, 1]\) are such that \(\mu_2(v_i, v_j) \leq \min \{\mu_1(v_i), \mu_1(v_j)\}\) and \(\gamma_2(v_i, v_j) \leq \max \{\gamma_1(v_i), \gamma_1(v_j)\}\) and \(0 \leq \mu_2(v_i, v_j) + \gamma_2(v_i, v_j) \leq 1\), for every \((v_i, v_j) \in E, (i,j = 1,2, \ldots, n)[8].\)

Definition 2.7. If \(v_i, v_j \in V \subseteq G\), the \(\mu\)-strength of connectedness between two vertices \(v_i\) and \(v_j\) is defined as \(\mu^k(v_i, v_j) = \sup \{\mu^k(v_i, v_j) : k = 1, 2, \ldots, n\}\) and \(\gamma\)-strength of connectedness between two vertices \(v_i\) and \(v_j\) is defined as \(\gamma^k(v_i, v_j) = \inf \{\gamma^k(v_i, v_j) : k = 1, 2, \ldots, n\}\).

If \(u\) and \(v\) are connected by means of paths of length \(k\) then \(\mu^k(u, v)\) is defined as \(\sup \{\mu^k(u, v) \land \mu^k(v, v_1) \land \ldots \land \mu^k(v_{k-1}, v) : (u, v_1, v_2, \ldots, v_{k-1}, v) \in V\}\)
and \(\gamma^k(u, v)\) is defined as \(\inf \{\gamma^k(u, v_1) \land \gamma^k(v_2, v) \land \gamma^k(v_3, v_4) \land \ldots \land \gamma^k(v_{k-1}, v) : (u, v_1, v_2, \ldots, v_{k-1}, v) \in V\}\).

Definition 2.8. Let \(G = (V,E)\) be an intuitionistic fuzzy graph on \(G^* : (V,E)\). Then the degree of a vertex \(v_i \in G\) is defined by \(d(v_i) = (d_0(v_i), d_1(v_i)),\) where \(d_0(v_i) = \sum \mu_2(v_i, v_j)\) and \(d_1(v_i) = \sum \gamma_2(v_i, v_j),\) for \(v_i, v_j \in E\) and \(d_0(v_i) = 0\) and \(d_1(v_i) = 0\) for \(v_i, v_j \in E[8].\)

Definition 2.9. Let \(G = (V,E)\) be an intuitionistic fuzzy graph on \(G^* : (V,E)\). Then the total degree of a vertex \(v_i \in G\) is defined by \(t_{d_2}(v_i) = td_0(v_i) + \mu_1(v_i)\) and \(td_1(v_i) = d_1(v_i)\) [8].

3 \(d_2\) - degree of vertex in Intuitionistic Fuzzy Graph

In this section, \(d_2\) - degree of a vertex in an intuitionistic fuzzy graph is introduced.

Definition 3.1. Let \(G = (A,B)\) be an intuitionistic fuzzy graph. The \(\mu\)-degree of a vertex \(u \in G\) is defined as \(d_{\mu_2}(u) = \sum \mu_2^{(2)}(u,v)\) where \(\mu_2^{(2)}(u,v) = \sup \{\mu_2(u,u_1) \land \mu_2(u_1,v) : u, u_1, v\) is the shortest path connecting \(u\) and \(v\) of length 2\}. The \(\gamma\)-degree of a vertex \(v \in G\) is defined as \(d_{\gamma_2}(v) = \sum \gamma_2^{(2)}(u,v)\) where \(\gamma_2^{(2)}(u,v) = \inf \{\gamma_2^{(2)}(u_1,v) \land \gamma_2^{(2)}(u_2,v) : u, u_1, v\) is the shortest path connecting \(u\) and \(v\) of length 2\}. The \(d_2\) - degree of a vertex \(u\) is defined as \(d_2(u) = (d_{\mu_2}(u), d_{\gamma_2}(u)).\)

The minimum \(d_2\) - degree of \(G\) is \(d_{\mu_2}(G) = A\{d_{\mu_2}(v) : v \in V\}\).

The maximum \(d_2\) - degree of \(G\) is \(d_{\gamma_2}(G) = A\{d_{\gamma_2}(v) : v \in V\}\).

Example 3.2. Consider an intuitionistic fuzzy graph \(G = (A,B)\) on \(G^* : (V,E)\)

![Figure.1](image-url)
Example 4.2. Consider an intuitionistic fuzzy graph $G = (A, B)$ on $G^* : (V,E)$

\[d_{2}(u) = (0.3 \land 0.4, 0.4 \lor 0.5) + (0.3 \land 0.5, 0.4 \lor 0.5) = (0.3, 0.5) + (0.3, 0.5) = (0.6, 1.0) \]

\[d_{2}(v) = (0.4 \land 0.5, 0.5 \lor 0.5) + (0.4 \land 0.4, 0.5 \lor 0.5) = (0.4, 0.5) + (0.4, 0.5) = (0.8, 1.0) \]

\[d_{2}(w) = (0.5 \land 0.2, 0.5 \lor 0.6) = (0.2, 0.6) \]

\[d_{2}(x) = (0.5 \land 0.3, 0.5 \lor 0.4) + (0.5 \land 0.4, 0.5 \lor 0.5) = (0.3, 0.5) + (0.4, 0.5) = (0.7, 1.0) \]

\[d_{2}(y) = (0.4 \land 0.3, 0.5 \lor 0.4) + (0.4 \land 0.4, 0.5 \lor 0.5) = (0.3, 0.5) + (0.4, 0.5) = (0.7, 1.0) \]

\[d_{2}(z) = (0.2 \land 0.3, 0.6 \lor 0.5) + (0.2 \land 0.5, 0.6 \lor 0.5) = (0.2, 0.6) + (0.2, 0.6) = (0.4, 1.2) \]

Note that $d_{2}(u) = (0.4, 1.0)$, $d_{2}(v) = (0.4, 1.0)$, $d_{2}(w) = (0.4, 1.0)$ and $d_{2}(x) = (0.4, 1.0)$. This graph is $(2, (0.4, 1.0))$-regular intuitionistic fuzzy graph.

Definition 4.3. Let $G = (A, B)$ be an intuitionistic fuzzy graph. Then the total d_{2}-degree of a vertex $u \in V$ is defined as $\gamma_{2}(u) = \gamma_{2}(u) + \gamma_{2}(u)$ where $\gamma_{2}(u) = d_{2}(u) + \mu_{2}(u)$ and $\gamma_{2}(u) = d_{2}(u) + \gamma_{2}(u)$. Also it can be defined as $d_{2}(u) = d_{2}(u) + A(u)$ where $A(u) = (\mu_{2}(u), \gamma_{2}(u))$.

Definition 4.4. Let $G = (A, B)$ be an intuitionistic fuzzy graph. If each vertex of G has same total d_{2}-degree, then G is said to be totally $(2, (c_1, c_2))$-regular intuitionistic fuzzy graph.

Example 4.5. Consider an intuitionistic fuzzy graph $G = (A, B)$ on $G^* : (V,E)$

\[d_{2}(u) = \{\text{sup}(0.1 \land 0.2, 0.1 \land 0.3), \text{inf}(0.2 \lor 0.3, 0.2 \lor 0.4)\} \]

\[d_{2}(v) = \{\text{sup}(0.1 \land 0.1, 0.2 \land 0.3), \text{inf}(0.2 \lor 0.2, 0.3 \lor 0.4)\} \]

\[d_{2}(w) = \{\text{sup}(0.1 \land 0.2, 0.3 \land 0.1), \text{inf}(0.3 \lor 0.2, 0.4 \lor 0.2)\} \]

\[d_{2}(x) = \{\text{sup}(0.1 \land 0.1, 0.2 \land 0.3), \text{inf}(0.2 \lor 0.2, 0.3 \lor 0.4)\} \]

\[d_{2}(y) = \{\text{sup}(0.1 \land 0.2, 0.3 \land 0.4), \text{inf}(0.2 \lor 0.2, 0.4 \lor 0.4)\} \]

\[d_{2}(z) = \{\text{sup}(0.1 \land 0.2, 0.3 \land 0.4), \text{inf}(0.2 \lor 0.2, 0.4 \lor 0.4)\} \]

4 $(2, (c_1, c_2))$ - Regular and Totally $(2, (c_1, c_2))$ - Regular Intuitionistic Fuzzy Graph

In this section $(2, (c_1, c_2))$-regular and totally $(2, (c_1, c_2))$-regular intuitionistic fuzzy graphs are introduced

Definition 4.1. Let $G = (A, B)$ be an intuitionistic fuzzy graph. If $d_{2}(u) = (c_1, c_2)$, for all $u \in V$, then G is said to be $(2, (c_1, c_2))$-regular intuitionistic fuzzy graph.

Example 4.2. Consider an intuitionistic fuzzy graph $G = (A, B)$ on $G^* : (V,E)$

Here $td_{2}(u) = (0.2, 0.4) + (0.5, 0.5) = (0.7, 0.9)$

$td_{2}(v) = (0.3, 0.3) + (0.4, 0.6) = (0.7, 0.9)$

$td_{2}(w) = (0.2, 0.4) + (0.5, 0.5) = (0.7, 0.9)$

$td_{2}(x) = (0.3, 0.3) + (0.4, 0.6) = (0.7, 0.9)$

This graph is totally $(2, (0.7, 0.9))$-regular intuitionistic fuzzy graph.

Example 4.6. A totally $(2, (c_1, c_2))$-regular intuitionistic fuzzy graph need not be $(2, (c_1, c_2))$-regular intuitionistic fuzzy graph. Consider an intuitionistic fuzzy graph $G = (A, B)$ on $G^* : (V,E)$
Here, \(t_{d_2}(u) = (1.1, 1.1) \). So \(G \) is totally \((2, (c_1, c_2))\) - regular intuitionistic fuzzy graph.

But \(d_{\frac{1}{2}}(u) \neq d_{\frac{1}{2}}(w) \). Hence \(G \) is not \((2, (c_1, c_2))\) - regular intuitionistic fuzzy graph

Example 4.7

A \((2, (c_1, c_2))\) - regular intuitionistic fuzzy graph need not be totally \((2, (c_1, c_2))\) - regular intuitionistic fuzzy graph. Consider intuitionistic fuzzy graph \(G = (A, B) \) on \(G^2 : (V,E) \)

Then \(d_{\frac{1}{2}}(u) = (0.4, 0.6) \), for all \(u \in V \) and \(t_{d_2}(u) = (0.8, 1.1) \), for all \(u \in V \). Hence \(G \) is \((2, (c_1, c_2))\) - regular intuitionistic fuzzy graph and totally \((2, (c_1, c_2))\) - regular intuitionistic fuzzy graph.

Theorem 4.9

Let \(G = (A, B) \) be an intuitionistic fuzzy graph on \(G^2(V,E) \). Then \(A(u) = (k_1, k_2) \), for all \(u \in V \) if and only if the following conditions are equivalent.

1. \(G = (A, B) \) is \((2, (c_1, c_2))\) - regular intuitionistic fuzzy graph.
2. \(G = (A, B) \) is totally \((2, (c_1 + k_1, c_2 + k_2))\) - regular intuitionistic fuzzy graph.

Proof. Suppose \(A(u) = (k_1, k_2) \), for all \(u \in V \). Assume that \(G \) is \((2, (c_1, c_2))\) - regular intuitionistic fuzzy graph. Then \(d_{\frac{1}{2}}(u) = (c_1, c_2) \), for all \(u \in V \)

So \(t_{d_2}(u) = d_{\frac{1}{2}}(u) + A(u) = (c_1, c_2) + (k_1, k_2) = (c_1 + k_1, c_2 + k_2) \)

Hence \(G \) is a totally \((2, (c_1 + k_1, c_2 + k_2))\) - regular intuitionistic fuzzy graph.

Thus (i) \(\Rightarrow \) (ii) is proved.

Now suppose \(G \) is totally \((2, (c_1 + k_1, c_2 + k_2))\) - regular intuitionistic fuzzy graph.

\(\Rightarrow \) \(t_{d_2}(u) = (c_1 + k_1, c_2 + k_2), \) for all \(u \in V \)

\(\Rightarrow \) \(d_{\frac{1}{2}}(u) + A(u) = (c_1 + k_1, c_2 + k_2), \) for all \(u \in V \)

\(\Rightarrow \) \(d_{\frac{1}{2}}(u) + (k_1, k_2) = (c_1, c_2) + (k_1, k_2), \) for all \(u \in V \)

\(\Rightarrow \) \(d_{\frac{1}{2}}(u) = (c_1, c_2), \) for all \(u \in V \)

Hence \(G \) is \((2, (c_1, c_2))\) - regular intuitionistic fuzzy graph. Thus (i) and (ii) are equivalent.

Conversely assume (i) and (ii) are equivalent. Let \(G \) be a \((2, (c_1, c_2))\) - regular intuitionistic fuzzy graph and totally \((2, (c_1 + k_1, c_2 + k_2))\) - regular intuitionistic fuzzy graph.

\(\Rightarrow \) \(t_{d_2}(u) = (c_1 + k_1, c_2 + k_2) \) and \(d_{\frac{1}{2}}(u) = (c_1, c_2), \) for all \(u \in V \)

\(\Rightarrow \) \(d_{\frac{1}{2}}(u) + A(u) = (c_1 + k_1, c_2 + k_2) \) and \(d_{\frac{1}{2}}(u) = (c_1, c_2), \) for all \(u \in V \)

\(\Rightarrow \) \(d_{\frac{1}{2}}(u) + (k_1, k_2) = (c_1, c_2) + (k_1, k_2) \) and \(d_{\frac{1}{2}}(u) = (c_1, c_2), \) for all \(u \in V \)

\(\Rightarrow \) \(A(u) = (k_1, k_2), \) for all \(u \in V \). Hence \(A(u) = (k_1, k_2) \).

5 (2, (c_1, c_2)) - regularity on path on four vertices with specific membership function

In this section \((2, (c_1, c_2))\) - regularity on path on four vertices is discussed with some specific membership function.
Theorem 5.1. Let $G = (A,B)$ be an intuitionistic fuzzy graph such that $G^*(V,E)$ is path on four vertices. If B is constant function then G is $(2, (c_1, c_2))$ - regular intuitionistic fuzzy graph.

Proof. Suppose that B is constant function, say $B(\{u\}) = (k_1, k_2)$, for all $u \in E$. Then $d_{G^*}(u) = (k_1, k_2)$. Hence G is $(2, (c_1, c_2))$ - regular intuitionistic fuzzy graph.

Remark 5.2. The converse of Theorem 5.1 need not be true. For example consider $G = (A,B)$ an intuitionistic fuzzy graph such that $G^*(V,E)$ is path on four vertices.

![Figure 8](image)

Note that $d_{G^*}(u) = (0.2, 0.4)$, for all $u \in V$. So, G is a $(2, (0.2, 0.4))$ - regular intuitionistic fuzzy graph. But B is not a constant function.

Theorem 5.3. Let $G = (A,B)$ be an intuitionistic fuzzy graph such that $G^*(V,E)$ is path on four vertices. If alternate edges have same membership values then G is $(2, (c_1, c_2))$ - regular intuitionistic fuzzy graph where $c_1 = \min\{\mu^2_{G^*}\}$ and $c_2 = \max\{\nu^2_{G^*}\}$.

Theorem 5.4. Let $G = (A,B)$ be an intuitionistic fuzzy graph such that $G^*(V,E)$ is path on four vertices. If the middle edge have membership value less than membership value of remaining edges and non-membership value greater than non-membership value of remaining edges, then G is a $(2, (c_1, c_2))$ - regular intuitionistic fuzzy graph where c_1 and c_2 are membership values of the middle edge.

Example 5.5. Consider an intuitionistic fuzzy graph $G = (A,B)$ on $G^* : (V,E)$

![Figure 9](image)

Note that $d_{G^*}(u) = (0.1, 0.4), d_{G^*}(v) = (0.1, 0.4), d_{G^*}(w) = (0.1, 0.4)$ and $d_{G^*}(x) = (0.1, 0.4)$. Hence G is a $(2, (0.1, 0.4))$ - regular intuitionistic fuzzy graph.

Remark 5.6. If A is constant function, then Theorems 5.1, 5.3 and 5.4 hold good for totally $(2, (c_1, c_2))$ - regular intuitionistic fuzzy graph.

6 $(2, (c_1, c_2))$ - regularity on Barbell graph $B_{n,n}(n > 1)$ with some specific membership function

In this section $(2, (c_1, c_2))$ - regularity on Barbell graph is discussed with some specific membership function.

Theorem 6.1. Let $G = (A,B)$ be an intuitionistic fuzzy graph such that $G^*(V,E)$ is a barbell graph $B_{n,n}$ of order $2n$. If B is a constant function, then G is $(2, (c_1, c_2))$ - regular intuitionistic fuzzy graph where $(c_1, c_2) = nB(\{uv\})$ where $uv \in E$.

Remark 6.2. The converse of theorem 6.1 need not be true. For example consider $G = (A,B)$ be an intuitionistic fuzzy graph such that $G^*(V,E)$ is barbell graph $B_{2,2}$ of order 6.

![Figure 10](image)

Note that $d_{G^*}(u) = (0.4, 0.6)$, for all $u \in V$. So, G is a $(2, (0.4, 0.6))$ - regular intuitionistic fuzzy graph. But B is not a constant function.

Theorem 6.3. Let $G = (A,B)$ be an intuitionistic fuzzy graph on $G^*(V,E)$, a barbell graph $B_{n,n}(n > 1)$. If the pendant edge has membership value less than the membership value of middle edge and non-membership value greater than non-membership value of middle edge then G is $(2, (n(c_1, c_2))$ - regular intuitionistic fuzzy graph where (c_1, c_2) is the membership value of pendant edge.

Remark 6.4. If A is constant function, then the theorem 6.1 and 6.3 hold good for totally $(2, (c_1, c_2))$ - regular intuitionistic fuzzy graph.
7. (c₁, c₂) - regularity on a cycle with some specific membership functions

In this section (c₁, c₂)- regularity on a cycle is discussed with some specific membership functions.

Theorem 7.1. Let $G = (A,B)$ be an intuitionistic fuzzy graph such that $G'(V,E)$ is the cycle of length ≥ 5. If $\mu_2^{(2)}$ and $\nu_2^{(2)}$ are constant functions, then G is a (2, (c₁, c₂)) - regular intuitionistic fuzzy graph where $(c₁, c₂) = \{(\mu_2^{(2)}, \nu_2^{(2)})\}$.

Remark 7.2. The converse of the theorem 7.1 need not be true. For example consider $G = (A,B)$ be an intuitionistic fuzzy graph such that $G'(V,E)$ is an odd cycle of length five.

![Figure 11](image1)

Note that $d_{(2)}(u) = (0.4, 0.8)$, for all $u \in V$.
So G is a (2, (0.4, 0.8)) - regular intuitionistic fuzzy graph. But $\mu_2^{(2)}$ and $\nu_2^{(2)}$ are not constant functions.

Theorem 7.3. Let $G = (A,B)$ be an intuitionistic fuzzy graph such that $G'(V,E)$ is an even cycle of length ≥ 6. If alternate edges have same positive and negative membership values then G is a (2, (c₁, c₂)) - regular intuitionistic fuzzy graph.

Proof. If alternate edges have same positive and negative membership values then

$$\mu_2(e_i) = \begin{cases} c_1 & \text{if } i \text{ is odd} \\ c_2 & \text{if } i \text{ is even} \end{cases}$$

$$\nu_2(e_i) = \begin{cases} c_3 & \text{if } i \text{ is odd} \\ c_4 & \text{if } i \text{ is even} \end{cases}$$

Here we have 4 possible cases

1. $c_1 > c_2$ and $c_3 > c_4$
2. $c_1 > c_2$ and $c_3 < c_4$
3. $c_1 < c_2$ and $c_3 > c_4$
4. $c_1 < c_2$ and $c_3 < c_4$

In all cases $d_{(2)}(u)$ is constant for all $u \in V$.

Hence G is a (2, (c₁, c₂)) - regular intuitionistic fuzzy graph where $d_{(2)}(u) = (c₁, c₂)$.

![Figure 12](image2)

Note that $d_{(2)}(u) \neq d_{(2)}(v)$. Hence G is not a (2, (c₁, c₂)) - regular intuitionistic fuzzy graph.

Remark 7.4. If all the vertices take same positive and negative membership values then the Theorem 7.3 holds good for totally (2, (c₁, c₂)) - regular intuitionistic fuzzy graph.

Remark 7.5. Let $G = (A,B)$ be an intuitionistic fuzzy graph such that $G'(V,E)$ is an odd cycle of length > 5. Even if the alternate edges have same positive and same negative membership values, then G need not be a (2, (c₁, c₂)) - regular intuitionistic fuzzy graph.

Theorem 7.6. Let $G = (A,B)$ be an intuitionistic fuzzy graph such that $G'(V,E)$ is any cycle of length > 4. Let $k_2 \geq k_1$ and $k_4 \geq k_3$. Let

$$\mu_2(e_i) = \begin{cases} k_1 & \text{if } i \text{ is odd} \\ k_2 & \text{if } i \text{ is even} \end{cases}$$

$$\nu_2(e_i) = \begin{cases} k_3 & \text{if } i \text{ is odd} \\ k_4 & \text{if } i \text{ is even} \end{cases}$$

Then G is a (2, (c₁, c₂)) - regular intuitionistic fuzzy graph.

Proof. Case (i) G' be an even cycle.

$$d_{(2)}(e_{i_1}) = (k_1 \land k_2, k_3 \lor k_4) + (k_1 \land k_2, k_3 \lor k_4)$$

$$= (k_1, k_4) + (k_1, k_4) = (2k_1, 2k_4)$$

$$d_{(2)}(e_{i_2}) = (c_1, c_2)$$

Hence G is (2, (c₁, c₂)) - regular intuitionistic fuzzy graph.

case(ii) G' be an odd cycle. Let $e_{i_1}, e_{i_2}, \ldots, e_{2n+1}$ be edges of G'

$$d_{(2)}(e_{i_1}) = \mu_2^{(2)}(c_1, c_2) \land \mu_2^{(2)}(e_{i_2}) \lor \nu_2^{(2)}(e_{i_2})$$

$$= (k_1 \land k_2, k_3 \lor k_4) + (k_1 \land k_2, k_3 \lor k_4)$$

$$= (k_1, k_4) + (k_1, k_4) = (2k_1, 2k_4)$$

$$d_{(2)}(e_{i_2}) = (c_1, c_2)$$

Hence G is (2, (c₁, c₂)) - regular intuitionistic fuzzy graph.

$$d_{(2)}(e_{i_2}) = \mu_2^{(2)}(c_1, c_2) \land \mu_2^{(2)}(e_{i_2}) \lor \nu_2^{(2)}(e_{i_2})$$

$$= (k_1 \land k_2, k_3 \lor k_4) + (k_1 \land k_2, k_3 \lor k_4)$$

$$= (k_1, k_4) + (k_1, k_4) = (2k_1, 2k_4)$$

$$d_{(2)}(e_{i_2}) = (c_1, c_2)$$

Hence G is (2, (c₁, c₂)) - regular intuitionistic fuzzy graph.
Remark 7.7. The above theorem 7.6 holds good for totally \((2, (c_1, c_2))\) – regular intuitionistic fuzzy graph if all the vertices take same positive and same negative membership values.

Theorem 7.8. Let \(G = (A,B)\) be intuitionistic fuzzy graph such that \(G^* (V,E)\) is any cycle of length \(>4\).

\[
\mu_2(e_i) = \begin{cases}
 k_1 & \text{if } i \text{ is odd} \\
 k_2 & \text{if } i \text{ is even}
\end{cases}
\]

where \(k_2 \leq k_1\) and \(k_3 \leq k_4\) are not constants, then \(G\) is \((2, (c_1, c_2))\) - regular intuitionistic fuzzy graph.

Proof. case (i) \(G^*\) be an even cycle.

\[
d_{G^*}(v_i) = (k_1 \land k_2, k_3 \lor k_4) + (k_1 \land k_2, k_3 \lor k_4) = (k_2, k_3) + (k_2, k_3) = (2k_2, 2k_3)
\]

Hence \(G^*\) is \((2, (c_1, c_2))\) - regular intuitionistic fuzzy graph.

case (ii) \(G^*\) be an odd cycle.

Let \(e_1, e_2, \ldots, e_{2n+1}\) be edges of \(G^*\).

\[
d_{G^*}(v_i) = \left(\mu_2^{(2)}(e_1) \land \mu_2^{(2)}(e_2), \gamma_2^{(2)}(e_1) \lor \gamma_2^{(2)}(e_2)\right) + \left(\mu_2^{(2)}(e_{2n}) \land \mu_2^{(2)}(e_{2n+1}), \gamma_2^{(2)}(e_{2n}) \lor \gamma_2^{(2)}(e_{2n+1})\right)
\]

where \(c_1 \leq k_1\) and \(c_2 \leq k_2\) are not constants, then \(G\) is \((2, (c_1, c_2))\) - regular intuitionistic fuzzy graph.

Remark 7.9. The above theorem 7.8 holds good for totally \((2, (c_1, c_2))\) – regular intuitionistic fuzzy graph if all the vertices take same positive and same negative membership values.

REFERENCES

