
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 4 Issue 11, November 2015

4202

ISSN: 2278 – 1323 All Rights Reserved © 2015 IJARCET



Abstract- Data mining is the most fast growing area today

which is used to extract important knowledge from large

data collections but often these collections are divided

among several parties. This paper addresses secure

mining of association rules over horizontally partitioned

data. This method incorporates a protocol is that of

Kantarcioglu and Clifton well known as K&C protocol.

This protocol is based on an unsecured distributed

version of the Apriori algorithm named as Fast

Distributed Mining (FDM) algorithm of Cheung et al.

The main ingredients in our protocol are two novel

secure multi-party algorithms one that computes the

union of private subsets that each of the interacting

players hold and another that tests an element is secured

or not.This protocol offers enhanced privacy with respect

to the earlier protocols.

Index Terms - Privacy Preserving Data Mining; Distributed

Computation; Frequent Itemsets; Association Rules.

I. INTRODUCTION

Data mining has been viewed as a threat to privacy because of

the widespread proliferation of electronic data maintained by

corporations. This has lead to increased concerns about the

privacy of the underlying data. Data mining techniques find

hidden information from large database while secret data is

preserved safely when data is allowed to access by single

person. Now a days many people want to access data or

hidden information using data mining technique even they

are not fully authorized to access. For getting mutual

benefits, many organizations wish to share their data to many

legitimate people but without revealing their secret data.

In large applications the whole data may be in single place

called centralized or multiple sites called distributed

database. Methodologies are proposed by many authors for

both centralized as well as distributed database to protect

private data. This paper deals with privacy preserving in

distributed database environment while sharing discovered

knowledge/hidden information to many legitimate people.

In distributed environment, database is a collection of

multiple, logically interrelated databases distributed over a

computer network and are distributed among number of sites.

As the database is distributed, different users can access it

without interfering with one another. In distributed

environment, database is partitioned into disjoint fragments

and each site consists of only one fragment. Data can be

partitioned in different ways such as horizontal, vertical and

mixed. In horizontal partitioning of data, each fragment

consists of a subset of the records of a relation R.

There are several sites (or players) that hold homogeneous

databases, i.e., databases that share the same schema but hold

information on different entities. The goal is to find all

association rules with support at least s and confidence at

least c, for some given minimal support size s and confidence

level c, that hold in the unified database, while minimizing

the information disclosed about the private databases held by

those players. The information that we would like to protect

in this context is not only individual transactions in the

different databases, but also more global information such as

what association rules are supported locally in each of those

databases.

That goal defines a problem of secure multi-party

computation. In such problems, there are M players that hold

private inputs, x1, . . . , xM, and they wish to securely

compute y = f(x1, . . . , xM) for some public function f. If there

existed a trusted third party, the players could surrender to

him their inputs and he would perform the function

evaluation and send to them the resulting output. In the

absence of such a trusted third party, it is needed to devise a

protocol that the players can run on their own in order to

arrive at the required output y. Such a protocol is considered

perfectly secure if no player can learn from his view of the

protocol more than what he would have learnt in the

idealized setting where the computation is carried out by a

trusted third party. Yao [1] was the first to propose a generic

solution for this problem in the case of two players. Other

generic solutions, for the multi-party case, were later

proposed [2, 3, 4].

Kantarcioglu and Clifton studied that problem in [5] and

devised a protocol for its solution. The main part of the

protocol is a sub-protocol for the secure computation of the

union of private subsets that are held by the different players.

(The private subset of a given player, as we explain below,

includes the itemsets that are s-frequent in his partial

database.) That is the most costly part of the protocol and its

implementation relies upon cryptographic primitives such as

commutative encryption, oblivious transfer, and hash

functions. This is also the only part in the protocol in which

the players may extract from their view of the protocol

information on other databases, beyond what is implied by

the final output and their own input. While such leakage of

information renders the protocol not perfectly secure, the

perimeter of the excess information is explicitly bounded in

[5] and it is argued there that such information leakage is

innocuous, whence acceptable from a practical point of view.

Herein we propose an alternative protocol for the secure

computation of the union of private subsets. The proposed

protocol improves upon that in [5] in terms of simplicity and

efficiency as well as privacy. In particular, our protocol does

not depend on commutative encryption and oblivious

transfer. While our solution may leak excess information

only to a small number (three) of possible coalitions, unlike

the protocol of [5] that discloses information also to some

Efficient Protocol for Privacy Preserving

Association Rule Mining

Dr. P. R. Deshmukh , Miss Prajakta Jaswante.

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 4 Issue 11, November 2015

4203

ISSN: 2278 – 1323 All Rights Reserved © 2015 IJARCET

single players. In addition, we claim that the excess

information that our protocol may leak is less sensitive than

the excess information leaked by the protocol [5].

The protocol that we propose here may computes a

parameterized family of functions, which we call threshold

functions, in which the two extreme cases may correspond to

the problems of computing the union and intersection of

private subsets. Those are in fact general-purpose protocols

that can be used in other contexts as well. Another problem of

secure multiparty computation that we want solve is the set

inclusion problem;(namely, the problem where Alice holds a

private subset of some ground set, and Bob holds an element

in the ground set, and they wish to determine whether Bob’s

element is within Alice’s subset, without revealing to either

of them information about the other party’s input beyond the

above described inclusion.)

II. LITERATURE REVIEW AND RELATED WORK

Previous work in privacy preserving data mining has

considered two related settings. One, in which the data owner

and the data miner are two different entities, and another, in

which the data is distributed among several parties who aim

to jointly perform data mining on the unified corpus of data

that they hold.

In the first setting, the goal is to protect the data records

from the data miner. Hence, the data owner aims at

anonymizing the data prior to its release. The main approach

in this context is to apply data perturbation [6, 7]. The idea is

that the perturbed data can be used to infer general trends in

the data, without revealing original record information.

In the second setting, the goal is to perform data mining

while protecting the data records of each of the data owners

from the other data owners. This is a problem of secure

multiparty computation. The usual approach here is

cryptographic rather than probabilistic. Lindell and Pinkas

[8] showed how to securely build an ID3 decision tree when

the training set is distributed horizontally. Lin et al. [9]

discussed secure clustering using the EM algorithm over

horizontally distributed data. The problem of distributed

association rule mining was studied in [10, 11, 12] in the

vertical setting, where each party holds a different set of

attributes, and in [6] in the horizontal setting. Also the work

of [13] considered this problem in the horizontal setting, but

they considered large-scale systems in which, on top of the

parties that hold the data records (resources) there are also

managers which are computers that assist the resources to

decrypt messages; another assumption made in [13] that

distinguishes it from [6] and the present study is that no

collusions occur between the different network nodes —

resources or managers.

all k-itemsets that are locally s-frequent at Dm, 1 ≤ m ≤ M.

Our main computational goal is to find, for a given threshold

support 0 < s ≤ 1, the set of all s frequent itemsets, Fs := ∪L

k=1 Fk
s . We may then continue to find all (s, c)-association

rules, i.e., all association rules of support at least sN and

confidence at least c. (Recall that if X and Y are two disjoint

subsets of A, the support of the corresponding association

rule X ⇒ Y is supp(X ∪ Y) and its confidence is supp(X ∪ Y

)/supp(X).)

III. EXISTING SYSTEM

A. The Fast Distributed Mining Algorithm

The protocol is based on the Fast Distributed

Mining (FDM) algorithm of Cheung et al. which is an

unsecured distributed version of the Apriori algorithm. Its

main idea is that any s-frequent itemset must be also locally

s-frequent in at least one of the sites. Hence, in order to find

all globally s-frequent itemsets, each player reveals his

locally s-frequent itemsets and then the players check each of

them to see if they are s-frequent also globally.

The FDM algorithm proceeds as follows:

(1) Initialization: It is assumed that the players have already

jointly calculated Fk−1 s. The goal is to proceed and calculate

Fk
 s .

(2) Candidate Sets Generation: Each player Pm computes

the set of all (k − 1)-itemsets that are locally frequent in his

site and also globally frequent; namely, Pm computes the set

Fk−1,m
s ∩ Fk−1

s . He then applies on that set the Apriori

algorithm in order to generate the set Bk,m
s of candidate

k-itemsets.

(3) Local Pruning: For each X ∈ Bk,m
s , Pm computes

suppm(X). He then retains only those itemsets that are locally

s-frequent. We denote this collection of itemsets by Ckm
s

(4) Unifying the candidate itemsets: Each player

broadcasts his Ckm
s and then all players compute Ck := UM m=1

Ckm
s

(5) Computing local supports: All players compute the local

supports of all itemsets in Ck
s .

(6) Broadcast Mining Results: Each player broadcasts the

local supports that he computed. From that, everyone can

compute the global support of every itemset in Ck
s . Finally,

Fk
 s is the subset of Ck

s that consists of all globally sfrequent

k-itemsets.

In the first iteration, when k = 1, the set C1,m
s that the mth

player computes (Steps 2-3) is just F1,m
s , namely, the set of

single items that are s-frequent in Dm. The complete FDM

algorithm starts by finding all single items that are globally

s-frequent. It then proceeds to find all 2-itemsets that are

globally s-frequent, and so forth, until it finds the longest

globally s-frequent itemsets. If the length of such itemsets is

K, then in the (K +1)th iteration of the FDM it will find no (K

+ 1)-itemsets that are globally s-frequent, in which case it

terminates.

B. Disadvantages of Existing System

 Insufficient security

 More time consuming

 Not efficient in term of data mining and security

IV. PROPOSED SYSTEM

The FDM algorithm violates privacy in two stages:

In Step 4, where the players broadcast the itemsets those are

locally frequent in their private databases, and in Step 6,

where they broadcast the sizes of the local supports of

candidate itemsets. FDM not efficient in term of database

mining as it uses Local pruning technique. Kantarcioglu and

Clifton [5] proposed secure implementations of those two

steps. Our improvement is with regard to the secure

implementation of Step 4, which is the more costly stage of

the protocol, and the one in which the protocol leaks excess

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 4 Issue 11, November 2015

4204

ISSN: 2278 – 1323 All Rights Reserved © 2015 IJARCET

information. We proposed global pruning technique which

results in improved data mining results. In this Section we

describe our proposed system in term of efficient data mining

and Kantarcioglu and Clifton’s secure implementation of

Step 4. After data mining following are the results of various

scenarios.

Our proposed system works in below mention first two

phases and in third phase we evaluate efficiency.

A] Efficient data mining using proposed data mining

algorithm

B] Privacy Preserving using proposed unify – KC

algorithm

C] Performance Evaluation

A] Efficient data mining using proposed data mining

algorithm

i. Initialization: It is assumed that the players have

already jointly calculated Fsk−1 . The goal is to

proceed and calculate Fsk .

ii. Candidate Sets Generation: Each player Pm computes

the set of all (k − 1)-itemsets that are locally

frequent in his site and also globally frequent;

namely, Pm computes the set Fk−1,m s ∩ Fk−1 s

. He then applies on that set the Apriori algorithm

in order to generate the set Bk,ms of candidate

k-itemsets.

iii. Generation of Unifying Item Set : We do Union of

all Ckms to form Unified Item Set. Which we

will denote as X.

iv. Global Frequent Item set : For X ∈ Bk,m s ,

Computes global supp m(X). Compute global

support and apply it on Unify Item set then it

retains only those itemsets that are Globally

s-Frequent

v. Encrypting and Decrypting Global Item set: Secure

s-globally itemsets using modified Unify-KC

algorithm mention in section B.

B] Privacy Preserving using proposed unify – KC

algorithm (Protocol 1)

Algorithm

• Input global itemset Gi = { i1,i2,i3…in}

• Enter support and hash key

• Build a Lookup table

• Encrypt Items

 for i=1 to length of G

 Count = 0

 Item = Gi {i}

 if (Item (freq) > support)

 Read hask key Hk

 Read item to array

 for j=1 to length of item

 Char p = item (j)

 Char k = hash (count)

 p’ = p + k

 Attach to encrypted Ep

 Count++

 if count > length (Hk)

 Count = 0

 end

 end

 end

 end

• Check in lookup table for duplicates. Discard

duplicate items.

• Decrypt items

• Update lookup table

C] Performance Evaluation

 Performance can be evaluated on no of parameters for

a system. The parameters we have considered are noted

against others when data is mined by our improved protocol.

Consider a system of three databases in which any item is

searched. Following are the steps followed -

 For example a particular name is searched in all the

databases.

 It shows the frequency at each databases for which

each item occurs.

 Union of the local items takes place and they are

passed onto support application.

 Support and hash key is applied thus we get set of

items which we call as global itemset.

 All the global itemsets are stored in cache as it helps

for fast retrieval.

 Above hash key is used to encrypt the items and it is

stored in lookup table for further reference.

 Same lookup table is used to decrypt the items using

respective hash key.

 So when the item is searched again it first checks

whether it is found in cache. If present it gets the

items from cache else it goes to search in local

database.

 Thus by mining data by our protocol and securing it

We get various parameters which shows relations

between them.

C 1] Efficiency in Mining process

[When support = 4 , 8 , 12; update db freq and execution time

are noted.]

C 2] Efficiency in Mining process

 [When update db frequency = 20 , 30 , 40 , 50 ; support and

execution time are noted.]

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 4 Issue 11, November 2015

4205

ISSN: 2278 – 1323 All Rights Reserved © 2015 IJARCET

C 3] Efficiency in Mining process

 [When support = 4 , 8 , 12 update db frequency and hit rate

are noted.]

C 4] Efficiency in Mining process

 [When db freq = 20 , 30 , 40 , 50 support and hit rate are

noted.]

C 5] Efficiency in Security

During encryption when different hash key values are used

below are the execution time variations at different database

frequency.

A] When db freq = 20 , two values of hash keys are noted.

B] When db freq = 30 , two values of hash keys are noted.

C] When db freq = 40 , two values of hash keys are noted.

D] When db freq = 50 , two values of hash keys are noted.

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 4 Issue 11, November 2015

4206

ISSN: 2278 – 1323 All Rights Reserved © 2015 IJARCET

Efficiency Evaluation
We evaluate efficiency against existing system on below

parameters:

1] Efficiency in Mining process

 A] No of transaction v/s Execution Time

 B] Hit Rate Comparison

2) Efficiency in Security

 A] Time required for Encryption and Decryption

comparison

 B] Memory usage comparison

1] No of transaction v/s Execution Time

Table 1] No of transaction v/s Execution Time

Update db

freq

Apriori

algo

M-Apriori

algo

Proposed

algo

20 223 134 69

30 250 150 75

40 445 267 150

50 556 334 175

2] Hit Rate Comparison

2] Hit Rate Comparison

Percentage Cache M Partition Proposed

% 40 60 50

3] Time required for Encryption and Decryption

comparison (millisec)

3] Time required for Encryption and Decryption

comparison (millisec)

Update db

frequency

Proposed

Algorithm

DES Rijndae

l

Triple

DES

20 72 194 269 247

30 84 208 278 251

40 121 228 294 263

50 142 244 307 279

4] Memory usage comparison (in bytes)

4] Memory usage comparison (in bytes)

Original

Item

Proposed

Algorithm

DES Rijndae

l

Triple

DES

Nagpur 8 12 24 12

67 8 12 24 12

college 10 24 24 24

er 8 12 24 12

Eng 8 12 24 12

Amravati 10 24 24 24

Ti 8 12 24 12

34 8 12 24 12

V. CONCLUSION

We proposed a protocol for secure mining of association rules

in horizontally distributed databases that improves

significantly upon the current leading protocol in terms of

privacy and efficiency. Our protocol works significantly well

in terms of resource consumption as well. Thus above are the

results indicates our implementation as superior than the

existing system. Concept of global pruning has helped out

alot to improve efficiency in terms of data mining and

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 4 Issue 11, November 2015

4207

ISSN: 2278 – 1323 All Rights Reserved © 2015 IJARCET

security. We have also provided security to our system by

applying encryption algorithm. Thus data can be mined more

securely.

VI. REFERENCES

[1] A.C. Yao. Protocols for secure computation. In FOCS, pages 160–164,

1982.

[2] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure

protocols. In STOC, pages 503–513, 1990.

[3] A. Ben-David, N. Nisan, and B. Pinkas. FairplayMP - A system for secure

multi-party computation. In CCS, pages 257–266, 2008.

[4] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or

A completeness theorem for protocols with honest majority. In STOC, pages

218–229, 1987.

[5] M. Kantarcioglu and C. Clifton. Privacy-preserving distributed mining of

association rules on horizontally partitioned data. IEEE Transactions on

Knowledge and Data Engineering, 16:1026–1037, 2004.

[6] R. Agrawal and R. Srikant. Privacy-preserving data mining. In SIGMOD

Conference, pages 439–450, 2000.

[7] A.V. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Privacy

preserving mining of association rules. In KDD, pages 217–228, 2002.

[8] Y. Lindell and B. Pinkas. Privacy preserving data mining. In Crypto, pages

36–54, 2000.

[9] X. Lin, C. Clifton, and M.Y. Zhu. Privacy-preserving clustering with

distributed EM mixture modeling. Knowl. Inf. Syst., 8:68–81, 2005.

[10] M. Kantarcioglu, R. Nix, and J. Vaidya. An efficient approximate protocol

for privacy-preserving association rule mining. In PAKDD, pages 515–524,

2009.

[11] J. Vaidya and C. Clifton. Privacy preserving association rule mining in

vertically partitioned data. In KDD, pages 639–644, 2002.

[12] J. Zhan, S. Matwin, and L. Chang. Privacy preserving collaborative

association rule mining. In Data and Applications Security, pages 153– 165,

2005.

[13] A. Schuster, R. Wolff, and B. Gilburd. Privacy-preserving association rule

mining in large-scale distributed systems. In CCGRID, pages 411–418, 2004.

