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 

Abstract- Data mining is the most fast growing area today 

which is used to extract important knowledge from large 

data collections but often these collections are divided 

among several parties. This paper addresses secure 

mining of association rules over horizontally partitioned 

data. This method incorporates a protocol is that of 

Kantarcioglu and Clifton well known as K&C protocol. 

This protocol is based on an unsecured distributed 

version of the Apriori algorithm named as Fast 

Distributed Mining (FDM) algorithm of Cheung et al. 

The main ingredients in our protocol are two novel 

secure multi-party algorithms one that computes the 

union of private subsets that each of the interacting 

players hold and another that tests an element is secured 

or not.This protocol offers enhanced privacy with respect 

to the earlier protocols. 

Index Terms - Privacy Preserving Data Mining; Distributed 

Computation; Frequent Itemsets; Association Rules.  

I. INTRODUCTION  

Data mining has been viewed as a threat to privacy because of 

the widespread proliferation of electronic data maintained by 

corporations. This has lead to increased concerns about the 

privacy of the underlying data. Data mining techniques find 

hidden information from large database while secret data is 

preserved safely when data is allowed to access by single 

person. Now a days many people want to access data or 

hidden information using data mining technique even they 

are not fully authorized to access. For getting mutual 

benefits, many organizations wish to share their data to many 

legitimate people but without revealing their secret data.       

In large applications the whole data may be in single place 

called centralized or multiple sites called distributed 

database. Methodologies are proposed by many authors for 

both centralized as well as distributed database to protect 

private data. This paper deals with privacy preserving in  

distributed database environment while sharing discovered 

knowledge/hidden information to many legitimate people. 

In distributed environment, database is a collection of 

multiple, logically interrelated databases distributed over a 

computer network and are distributed among number of sites. 

As the database is distributed, different users can access it 

without interfering with one another. In distributed 

environment, database is partitioned into disjoint fragments 

and each site consists of only one fragment. Data can be  

partitioned in different ways such as horizontal, vertical and 

mixed. In horizontal partitioning of data, each fragment 

consists of a subset of the records of a relation R. 

There are several sites (or players) that hold homogeneous 

databases, i.e., databases that share the same schema but hold  

 
 

  

information on different entities. The goal is to find all 

association rules with support at least s and confidence at 

least c, for some given minimal support size s and confidence 

level c, that hold in the unified database, while minimizing 

the information disclosed about the private databases held by 

those players. The information that we would like to protect 

in this context is not only individual transactions in the 

different databases, but also more global information such as 

what association rules are supported locally in each of those 

databases. 

That goal defines a problem of secure multi-party 

computation. In such problems, there are M players that hold 

private inputs, x1, . . . , xM, and they wish to securely 

compute y = f(x1, . . . , xM) for some public function f. If there 

existed a trusted third party, the players could surrender to 

him their inputs and he would perform the function 

evaluation and send to them the resulting output. In the 

absence of such a trusted third party, it is needed to devise a 

protocol that the players can run on their own in order to 

arrive at the required output y. Such a protocol is considered 

perfectly secure if no player can learn from his view of the 

protocol more than what he would have learnt in the 

idealized setting where the computation is carried out by a 

trusted third party. Yao [1] was the first to propose a generic 

solution for this problem in  the case of two players. Other 

generic solutions, for the  multi-party case, were later 

proposed [2, 3, 4 ]. 

Kantarcioglu and Clifton studied that problem in [5] and 

devised a protocol for its solution. The main part of the 

protocol is a sub-protocol for the secure computation of the 

union of private subsets that are held by the different players. 

(The private subset of a given player, as we explain below, 

includes the itemsets that are s-frequent in his partial 

database.) That is the most costly part of the protocol and its 

implementation relies upon cryptographic primitives such as 

commutative encryption, oblivious transfer, and hash 

functions. This is also the only part in the protocol in which 

the players may extract from their view of the protocol 

information on other databases, beyond what is implied by 

the final output and their own input. While such leakage of 

information renders the protocol not perfectly secure, the 

perimeter of the excess information is explicitly bounded in 

[5] and it is argued there that such information leakage is 

innocuous, whence acceptable from a practical point of view. 

Herein we propose an alternative protocol for the secure 

computation of the union of private subsets. The proposed 

protocol improves upon that in [5] in terms of simplicity and 

efficiency as well as privacy. In particular, our protocol does 

not depend on commutative encryption and oblivious 

transfer. While our solution may leak excess information 

only to a small number (three) of possible coalitions, unlike 

the protocol of [5] that discloses information also to some 
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single players. In addition, we claim that the excess 

information that our protocol may leak is less sensitive than 

the excess information leaked by the protocol [5]. 

The protocol that we propose here may computes a 

parameterized family of functions, which we call threshold 

functions, in which the two extreme cases may correspond to 

the problems of computing the union and intersection of 

private subsets. Those are in fact general-purpose protocols 

that can be used in other contexts as well. Another problem of 

secure multiparty computation that we want solve is the set 

inclusion problem;( namely, the problem where Alice holds a 

private subset of some ground set, and Bob holds an element 

in the ground set, and they wish to determine whether Bob’s 

element is within Alice’s subset, without revealing to either 

of them information about the other party’s input beyond the 

above described inclusion.) 

II. LITERATURE REVIEW AND RELATED WORK  

Previous work in privacy preserving data mining has 

considered two related settings. One, in which the data owner 

and the data miner are two different entities, and another, in 

which the data is distributed among several parties who aim 

to jointly perform data mining on the unified corpus of data 

that they hold. 

In the first setting, the goal is to protect the data records 

from the data miner. Hence, the data owner aims at 

anonymizing the data prior to its release. The main approach 

in this context is to apply data perturbation [6, 7]. The idea is 

that the perturbed data can be used to infer general trends in 

the data, without revealing original record information. 

In the second setting, the goal is to perform data mining 

while protecting the data records of each of the data owners 

from the other data owners. This is a problem of secure 

multiparty computation. The usual approach here is 

cryptographic rather than probabilistic. Lindell and Pinkas 

[8] showed how to securely build an ID3 decision tree when 

the training set is distributed horizontally. Lin et al. [9] 

discussed secure clustering using the EM algorithm over 

horizontally distributed data. The problem of distributed 

association rule mining was studied in [10, 11, 12] in the 

vertical setting, where each party holds a different set of 

attributes, and in [6] in the horizontal setting. Also the work 

of [13] considered this problem in the horizontal setting, but 

they considered large-scale systems in which, on top of the 

parties that hold the data records (resources) there are also 

managers which are computers that assist the resources to 

decrypt messages; another assumption made in [13] that 

distinguishes it from [6] and the present study is that no 

collusions occur between the different network nodes — 

resources or managers. 

all k-itemsets that are locally s-frequent at Dm, 1 ≤ m ≤ M. 

Our main computational goal is to find, for a given threshold 

support 0 < s ≤ 1, the set of all s frequent itemsets, Fs := ∪L 

k=1 Fk
s . We may then continue to find all (s, c)-association 

rules, i.e., all association rules of support at least sN and 

confidence at least c. (Recall that if X and Y are two disjoint 

subsets of A, the support of the corresponding association 

rule X ⇒ Y is supp(X ∪ Y ) and its confidence is supp(X ∪ Y 

)/supp(X).) 

 

III. EXISTING SYSTEM 

A. The Fast Distributed Mining Algorithm 

The protocol is based on the Fast Distributed 

Mining (FDM) algorithm of Cheung et al. which is an 

unsecured distributed version of the Apriori algorithm. Its 

main idea is that any s-frequent itemset must be also locally 

s-frequent in at least one of the sites. Hence, in order to find 

all globally s-frequent itemsets, each player reveals his 

locally s-frequent itemsets and then the players check each of 

them to see if they are s-frequent also globally. 

The FDM algorithm proceeds as follows: 

(1) Initialization: It is assumed that the players have already 

jointly calculated Fk−1 s. The goal is to proceed and calculate 

Fk
 s . 

(2) Candidate Sets Generation: Each player Pm computes 

the set of all (k − 1)-itemsets that are locally frequent in his 

site and also globally frequent; namely, Pm computes the set 

Fk−1,m 
s ∩ Fk−1 

s . He then applies on that set the Apriori 

algorithm in order to generate the set Bk,m
s of candidate 

k-itemsets. 

(3) Local Pruning: For each X ∈  Bk,m 
s , Pm computes 

suppm(X). He then retains only those itemsets that are locally 

s-frequent. We denote this collection of itemsets by Ckm
s 

(4) Unifying the candidate itemsets: Each player 

broadcasts his Ckm
s and then all players compute Ck  := UM m=1 

Ckm
s 

(5) Computing local supports: All players compute the local 

supports of all itemsets in Ck
s . 

(6) Broadcast Mining Results: Each player broadcasts the 

local supports that he computed. From that, everyone can 

compute the global support of every itemset in Ck
s .  Finally, 

Fk
 s is the subset of Ck

s that consists of all globally sfrequent 

k-itemsets. 

In the first iteration, when k = 1, the set C1,m 
s that the mth 

player computes (Steps 2-3) is just F1,m 
s , namely, the set of 

single items that are s-frequent in Dm. The complete FDM 

algorithm starts by finding all single items that are globally 

s-frequent. It then proceeds to find all 2-itemsets that are 

globally s-frequent, and so forth, until it finds the longest 

globally s-frequent itemsets. If the length of such itemsets is 

K, then in the (K +1)th iteration of the FDM it will find no (K 

+ 1)-itemsets that are globally s-frequent, in which case it 

terminates. 

 

B.  Disadvantages of Existing System 

 Insufficient security 

 More time consuming 

 Not efficient in term of data mining and security  

IV. PROPOSED SYSTEM  

The FDM algorithm violates privacy in two stages: 

In Step 4, where the players broadcast the itemsets those are 

locally frequent in their private databases, and in Step 6, 

where they broadcast the sizes of the local supports of 

candidate itemsets. FDM not efficient in term of database 

mining as it uses Local pruning technique. Kantarcioglu and 

Clifton [5] proposed secure implementations of those two 

steps. Our improvement is with regard to the secure 

implementation of Step 4, which is the more costly stage of 

the protocol, and the one in which the protocol leaks excess 
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information. We proposed global pruning technique which 

results in improved data mining results. In this Section we 

describe our proposed system in term of efficient data mining 

and  Kantarcioglu and Clifton’s secure implementation of 

Step 4. After data mining following are the results of various 

scenarios.  

Our proposed system works in below mention first two 

phases and in third phase we evaluate efficiency. 

 

A] Efficient data mining using proposed data mining 

algorithm 

B] Privacy Preserving using proposed unify – KC 

algorithm 

C] Performance Evaluation 

 

A] Efficient data mining using proposed data mining 

algorithm 

 

i. Initialization: It is assumed that the players have 

already jointly calculated Fsk−1 . The goal is to 

proceed and calculate Fsk . 

ii. Candidate Sets Generation: Each player Pm computes 

the set of all (k − 1)-itemsets that are locally 

frequent in his site and also globally frequent; 

namely, Pm computes the set Fk−1,m s ∩ Fk−1 s 

. He then applies on that set the Apriori algorithm 

in order to generate the set Bk,ms of candidate 

k-itemsets. 

iii. Generation of  Unifying Item Set : We do Union of 

all Ckms   to form Unified Item Set. Which we 

will denote as X.  

iv. Global Frequent Item set : For X ∈  Bk,m s , 

Computes global supp m(X). Compute global 

support and apply it on Unify Item set then it 

retains only those itemsets that are Globally 

s-Frequent 

v. Encrypting and Decrypting Global Item set: Secure 

s-globally itemsets using modified Unify-KC 

algorithm mention in section B. 

 

B] Privacy Preserving using proposed unify – KC 

algorithm (Protocol 1) 

 

Algorithm 

•   Input global itemset  Gi = { i1,i2,i3…in} 

•   Enter support and  hash key 

•   Build a Lookup table  

•   Encrypt Items 

      for i=1 to length of G 

                 Count = 0 

                 Item = Gi {i} 

             if ( Item (freq) > support) 

                   Read hask key Hk  

                   Read item to array 

                         for j=1 to length of item 

                                 Char  p = item (j) 

                                 Char k = hash (count) 

                                 p’ = p + k 

     Attach to encrypted Ep  

     Count++ 

                                    if  count > length (Hk) 

                                          Count = 0 

                                   end 

                          end 

                    end 

               end  

•  Check in lookup table for duplicates. Discard  

duplicate items. 

•  Decrypt items 

• Update lookup table 

 

C] Performance Evaluation 

   Performance can be evaluated on no of parameters for 

a system. The parameters we have considered are noted 

against others when data is mined by our improved protocol. 

Consider a system of three databases in which any item is 

searched. Following are the steps followed -  

 For example a particular name is searched in all the 

databases. 

 It shows the frequency at each databases for which 

each item occurs. 

 Union of the local items takes place and they are 

passed onto support application. 

 Support and hash key is applied thus we get set of 

items which we call as global itemset. 

 All the global itemsets are stored in cache as it helps 

for fast retrieval. 

 Above hash key is used to encrypt the items and it is 

stored in lookup table for further reference. 

 Same lookup table is used to decrypt the items using 

respective hash key. 

 So when the item is searched again it first checks 

whether it is found in cache. If present it gets the 

items from cache else it goes to search in local 

database. 

 Thus by mining data by our protocol and securing it 

We get various parameters which shows relations 

between them.  

 

C 1] Efficiency in Mining process 

[When support = 4 , 8 , 12; update db freq and execution time 

are noted.] 

 

 
 

C 2 ] Efficiency in Mining process 

 [When update db frequency =  20 ,  30 , 40 , 50 ; support and 

execution time are noted.] 
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C 3 ] Efficiency in Mining process 

 [When support = 4 , 8 , 12  update db frequency and hit rate 

are noted.] 

 

 

C 4 ] Efficiency in Mining process 

 [When db freq =  20 , 30 , 40 , 50 support and hit rate are 

noted.] 

 

 

C 5 ] Efficiency in Security 

During encryption when different hash key values are used 

below are the execution time variations at different database 

frequency. 

 

A] When db freq = 20 , two values of hash keys are noted. 

 

B ] When db freq = 30 , two values of hash keys are noted. 

 

 

C ] When db freq = 40 , two values of hash keys are noted. 

 

D ] When db freq = 50 , two values of hash keys are noted. 
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Efficiency Evaluation  
We evaluate efficiency against existing system on below 

parameters: 

1] Efficiency in Mining process  

   A] No of transaction v/s Execution Time 

   B] Hit Rate Comparison 

   

2) Efficiency in Security 

 A] Time required for Encryption and Decryption       

comparison  

 B] Memory usage comparison  

 

1] No of transaction v/s Execution Time 

 

 
 

Table 1] No of transaction v/s Execution Time 

 

Update db 

freq 

Apriori 

algo 

M-Apriori 

algo 

Proposed 

algo 

20 223 134 69 

30 250 150 75 

40 445 267 150 

50 556 334 175 

 

2] Hit Rate Comparison 

 

 
 

2] Hit Rate Comparison 

 

Percentage Cache M Partition Proposed 

% 40 60 50 

 

3] Time required for Encryption and Decryption       

comparison (millisec) 

 

 
 

3] Time required for Encryption and Decryption       

comparison (millisec) 

 

Update db 

frequency 

Proposed 

Algorithm 

DES Rijndae

l 

Triple 

DES 

20 72 194 269 247 

30 84 208 278 251 

40 121 228 294 263 

50 142 244 307 279 

 

4] Memory usage comparison (in bytes) 

 

 
 

4] Memory usage comparison (in bytes) 

 

Original 

Item 

Proposed 

Algorithm 

DES Rijndae

l 

Triple 

DES 

Nagpur 8 12 24 12 

67 8 12 24 12 

college 10 24 24 24 

er 8 12 24 12 

Eng 8 12 24 12 

Amravati 10 24 24 24 

Ti 8 12 24 12 

34 8 12 24 12 

V. CONCLUSION 

We proposed a protocol for secure mining of association rules 

in horizontally distributed databases that improves 

significantly upon the current leading protocol in terms of 

privacy and efficiency. Our protocol works significantly well 

in terms of resource consumption as well. Thus above are the 

results indicates our implementation as superior than the 

existing system. Concept of global pruning has helped out 

alot to improve efficiency in terms of data mining and 
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security. We have also provided security to our system by 

applying encryption algorithm. Thus data can be mined more 

securely. 
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