Rescue System for Coal Mine Workers using Different Sensors Based on GSM and RF-PRO

G. Divya
Department of ECE
G. Pullaiah College of Engineering and Technology, Kurnool, India

B.A. Sarath Manohar Babu
Associate Professor, Department of ECE,
G. Pullaiah College of Engineering and Technology, Kurnool, India

Abstract—In this paper we are implementing surveillance, safety measures for mine workers which is most essential in underground mining areas/sections. Here we are presenting MEMS based sensors network used to monitor the environment parameters of underground mine area and sends all sensed parameters/data to ARM7 processor. ARM7 processor is used to build a fully automated measuring system with reliability, high accuracy and smooth control. Upon detecting critical conditions/issues alert system starts and the same information is transmitted/passed to remote location by initiating modules based on GSM and RF-Pro (CC2500) communication Methods. The observed changes in the parameters will also be displayed in pc which makes easier for the underground control center to monitor and to take necessary immediate action to avoid damages and alerts through a mobile message.

Index Terms—Sensors Network, MEMS, GSM, RF-Pro, PC.

I. INTRODUCTION

Safety of person is primary concern/aspect in any industry, especially in underground mining industry. To avoid any type of unwanted phenomena, all mining industry follows some basic precaution and phenomena. In underground coal mine major of accidents occurred are based on fire and natural gas and overheating of surroundings. We are also considering the health condition of a person using Fall-Detector, made of MEMS-Accelerometer (ADXL335).

Coal mine safety monitoring system based on wireless sensor network can timely and accurately reflect dynamic situation of staff in the underground regions to ground computer system. The hybrid underpass radio propagation model comprising of the free space propagation and the modified waveguide propagation is proposed. However, using popular radio communication inside underground mines has some drawbacks. While radio signals are transmitted, attenuation, diffraction, multi-path and scattering are frequently very serious. Thus, wireless communication is the important need today for the fast, flexible safety, accurate and production method in underground mines.

There are different other research ideas proposed by different people on wireless communication. In a network called chain-type wireless underground mine sensor network (CWUMSN) is recently proposed which consists of three kinds of sensor nodes: sensing nodes, cluster head nodes, and a base station deployed on both sides of the tunnel at regular intervals to monitor the underground environment and locate the miners. A new decision-making approach to coal and gas outburst prediction with multisensory information fusion is proposed.

This system is design by considering all these parameters i.e. it can sense temperature, pressure, humidity, Fire, Gas as well as Persons Fall. Therefore the designed system is giving a very good solution for most of the problems faced in mine accidents.

A good communication system must be set between mine workers and Remote Base Station For this wired network communication is inefficient in underground mining areas. So we are choosing a wireless network system based on RF communication at 2.4 GHz (CC2500 RF Module is a Trans-Receiver module which provides easy to use RF communication at 2.4 GHz.) And GSM networks for sending SMS to fire and Ambulance.

II. DESCRIPTION OF THE SCENARIO

The proposed system is divided into two segments. First is a hardware circuit that will be attached with the body of the Mine Workers. It may be preferably fitted with the safety helmet of the workers also.

Fig 1 Block diagram Representation of Mine Section
This system has a sensor module consisting of some sensors that measures real-time underground parameters like temperature, Humidity, Accelerometer, LDR, Fire Sensor and Gas concentration. Excess Gas concentration is meant for the harmful gases like Methane, Carbon-monoxide, Butane and Propane.

Fig 2 Ground Control Station

Microcontroller is used with the sensors to receive the sensor outputs and to take the necessary decision. If temperature is more than the safety level pre-programmed at microcontroller, the controller decodes beep alarms through the speaker connected with controller. Once the measured humidity value is more than the safety level pre-programmed at microcontroller; it decodes different type of beep alarms. Similarly when gas concentration crosses the safety level, microcontroller decodes siren alarms. When person falls down for any reason accelerometer will give alert through RF PRO and alarm will give corresponding beep alerts. LDR sensor senses the light intensity and depending on the light intensity lights are turn-on or turn-off. Fire Sensor plays a role of detecting fire accidents and gives alert to base station which helps in taking necessary precautions. A 16x2 character LCD module is interfaced to show all the parameters like temperature, humidity etc., at underground MINER’S module.

GSM Modem is interfaced to the Module to send message to the fire station whenever there is fire accident in underground mine and also sends message to ambulance service if the person remains in Fall Position for large duration.

III. HARDWARE DESCRIPTION

A. SENSOR NETWORK

1) Temperature Sensor (LM35):

In the proposed system we use LM35 which is a precision IC temperature sensor with an output voltage linearly proportional to Centigrade temperature. The ADC of LPC2148 will convert analog value into digital value and this digital value will be displayed on the LCD display interfaced to LPC 2148.

2) MEMS Accelerometers (ADXL335):

The ADXL335 is a low power, thin, small, complete 3-axis accelerometer with signal conditioned voltage outputs. Product processes acceleration with a minimum full-scale range of ±3 g. They can measure the static acceleration of gravity in tilt-sensing device, as well as dynamic acceleration resulting from vibration, shock, or motion. X-axis is connected with controller and continuously checks that ‘g’ value change.

3) Humidity Sensor (HSM-20G):

Humidity is the amount of water vapor in the air. The humidity sensor HSM-20G is of resistive type. It is an analog humidity and temperature sensor that outputs analog voltage respects to relative humidity and temperature

4) Fire sensor:

The sensor is used to detect any trace of fire and it will give interrupt signal as soon as it detects Fire in underground regions. The sensor works on the principle of IR rays or Heat radiation detection.

5) MQ-4 Semiconductor Sensor for Natural Gas

For detection of Methane, also to Propane and Butane which are the major toxic gases in underground coal mines, MQ-4 gas sensor is used. MQ-4 has 6 pins; 4 of them are used to fetch signals and other 2 are used for supplying heating current.

6) Light Dependent Resistor (LDR):

In this system LDR is use to sense the darkness in underground mining section. If the working area is dark then LDR triggered circuit will turn ON the LED lights present on workers Helmet. This arrangement provides the system to have good battery backup and also gives convince to miner.

B. GSM MODULE

The sending SMS through GSM modem when interfaced with microcontroller or PC is much simpler as compared with sending SMS through Modem in PDU Mode. Plain Text message may be sent through the modem by interfacing only three signals of the serial interface of modem with microcontroller (TxD, RxD and GND). In this scheme RTS and CTS signals of serial port interface of GSM Modem are connected with one another. The transmit signal of serial port of microcontroller is connected with transmit signal (TxD) of the serial interface of GSM Modem while receive signal of microcontroller serial port is connected with receive signal (Rx D) of serial interface of GSM Modem.
C. RF-PRO (CC2500 MODULE)

1) RF module
RF module providing easy and flexible wireless data transmission between devices. This is based on AVR Atmega8 with serial output which can be interfaced directly to PC.

2) Low-Cost Low-Power 2.4 GHz RF Transceiver:
The CC2500 is a low-cost 2.4 GHz transceiver designed for very low-power wireless applications purpose. The circuit is intended for the 2400-2483.5 MHz SRD (Short Range Device) and ISM (Industrial, Scientific and Medical) frequency band. RF transceiver is integrated with a highly configurable baseband modem. This modem supports various modulation formats and has a configurable data rate up to 500 k baud. The CC2500 provides extensive hardware support for packet handling, burst transmissions, data buffering, link quality indication, wake-on-radio, and clear channel assessment. The main operating parameters and the 64-byte transmit/receive FIFOs of CC2500 can be controlled via an SPI interface. In any typical system, the CC2500 will be used together with a microcontroller and a few additional passive components.

D. LCD INTERFACING

Here we have interfaced a character based 16x2 LCD for displaying information regarding different parameters like temperature, humidity etc.

IV. SOFTWARE DESCRIPTION

As this system is based on embedded systems, the firmware development is done using Embedded C language. We have use various software tools in deploying the developed system. The most important among these tools are Keil IDE, Flash Magic and HyperTerminal.

A. About Keil IDE
Keil is free software that solves many of the pain points for an embedded programmer. This is an integrated development environment (IDE) software that integrated a text editor to write, a compiler to compile it and convert source code to hex files.

B. About HyperTerminal
The HyperTerminal tool is used to monitor Serial Ports in PC. Thus at the Remote station the collected data from RF Receive is displayed as mentioned in the Results section.

V. RESULTS
The Overall system’s results are given in this section. The LPC2148 Evolution Board which is shown in below figure is heart of all functionalities in miner module i.e. Monitoring, Processing collected data and taking necessary action based on the limits given for individual sensors.
In the following figure all sensors and modules are connected to form the first prototype of our proposed system.

On detection of abnormal activity at miner module the core system alerts and sends SMS to either Fire station or Ambulance based on the Interrupt source. SMS is sent to Fire station when Fire accident occurred in the underground area. Similarly SMS is sent to Ambulance if Person is fallen down. The Below figures show message received in both cases.

Here it goes the Monitor section i.e. Remote Base Station. In this station we use a PC to monitor the data through RF Receiver. This data is displayed in pc, which provides the complete information of workers and statistics of all the parameters.

VI. CONCLUSIONS

The present Mine security system can be effectively replaced by this rescue safety system proposed in this paper. Our system covered the most important and primary necessity aspect of any mine workers safety. The monitoring of depth and dangerous mines is made easy with this paper. As we are using Low power RF transmission and lamp control circuit lot of power utilization is reduced, which is most important for any system that run on Battery. More security is provided by GSM, used to send message to fire and ambulance. All these sensors can be easily placed on Miner’s Helmet that helps in continuous monitoring.

REFERENCES

BIOGRAPHIES

G. Divya received her B.Tech degree in Electronics and Communication Engineering from SKTRMCE Affiliated to Jawaharlal Nehru Technological University (Hyderabad) in 2012 and she is currently pursuing M.Tech in Digital Electronics and Communication Systems (DECS). Her research Interest includes Embedded Systems.

B.A.Sarath Manohar Babu received his M-tech. Degree in Digital Electronics & Communication Systems from JNTU Anantapur, A.P, India in 2009. He has 10 years of teaching experience in various engineering colleges in A.P. He is now working as Associate professor in Electronics Department at G.Pullaiah college of Engineering & Technology, Kurnool, A.P INDIA. His Area of interest is Wireless sensor networks. He has published 5 research Papers in International and National conferences, guided several B-tech projects, M-tech projects & thesis.