Routing Protocol for Power Heterogeneous MANETs

P.Dhivya, M.Rajakani

Abstract—Power heterogeneity is common in mobile ad hoc networks (MANETs). With high-power nodes, MANETs can improve network connectivity, scalability and broadcasting robustness. However, the throughput of heterogeneous MANETs can be severely impacted by high-power nodes. Heterogeneous wireless networks may consist of a network of computers or devices with different capabilities in terms of operating systems, hardware, protocols, etc., in mobile ad hoc networks communication can be performed through number of nodes. In such networks two types of nodes are available: high power node (H) and low power node (L). Low power nodes transmission range is smaller compared to the H node. H node has several advantages, but it suffers from reduced throughput. To address this issue, we present a protocol called Type Based Clustering (TBC) that improves the throughput by avoiding transmission through high power nodes.

Index Terms— Mobile ad hoc networks (MANETs), power heterogeneous, routing and Clustering.

I. INTRODUCTION

In recent years, there has been growing research interest in heterogeneous mobile ad hoc networks (MANETs). Such mobile network consists of devices with heterogeneous characteristics in terms of transmission power [1], [2], energy [3], capacity [4], radio [5], etc. [6]. A typical example of power heterogeneous MANETs is the vehicular ad hoc networks (VANETs), which are composed of heterogeneous wireless equipment carried by vehicles and human. In such a heterogeneous network, different devices have different capacities and are thus likely to transmit data with different power levels.

Wireless network are designed to work independently. Current 4G network is referred to as Heterogeneous wireless access network. The structure of heterogeneous network is classified as “Integrated networks” and “interworking network”. A typical example of power heterogeneous MANETs is the vehicles ad hoc networks (VANETs). Vehicular Ad hoc Networks (VANET) is part of Mobile Ad Hoc Networks (MANET), this means that every node can move freely within the network coverage and stay connected. Interesting types of data exchanged are

- Traffic/road conditions.
- Accidents/events.
- Commodity/entertainment.

Mobile nodes have different transmission power so that, power heterogeneity becomes a double-edged sword. There is also a benefit obtain from high-power nodes are the expansion of network coverage region and it also reduce the transmission delay in the network. High power nodes also generally have advantages in storage, power, computation capability, and data transmission range. As a result, research efforts have been carried out to explore these advantages. On the other hand, the large transmission range of high power nodes leads to large interference area in the network, which further reduces the spatial utilization of network resources. Because of different transmission power of nodes and other factors (e.g., barrier, interference, and noise), unidirectional or asymmetric links will exist in MANETs. Existing research show that routing protocols over unidirectional links perform poorly in multihop wireless networks [5]. However, the existing routing protocols in power heterogeneous MANETs are only designed to detect the unidirectional links and to avoid the transmissions based on asymmetric links without considering the benefits from very high-power nodes. Hence, the problem is how to improve the routing performance in the data transmission with power heterogeneous MANETs by efficiently exploiting the advantages and avoiding the disadvantages of high-power nodes in the network, which is the focus of this paper.

II. PROPOSED SYSTEM

Most of the existing protocols are limited to homogenous networks and perform ineffectively in power heterogeneous networks. To improve the network performance and to address the issues of high-power nodes, this paper proposes a TRPH MANETs. As shown in Fig. 1, TRPH consists of two core components. The first component (Component A) is the LVC algorithm that is used to tackle the unidirectional link and to construct the hierarchical structure. The second component (Component B) is the routing, including the route discovery and route maintenance in the network. In the following, first list the network model design and definitions. The two components is explained in detail.
A. Network Model

There are two types of nodes in the networks: H-nodes and general nodes (L-nodes). H-nodes refer to the nodes with high power and a large transmission range. L-nodes refer to the nodes with low power and a small transmission range. The numbers of H-nodes and L-nodes are denoted as N_H and N_L, respectively. Because of the complexity and high-cost of H-nodes, we assume that $N_H << N_L$.

Let us assume that each node is equipped with one IEEE 802.11b radio using a single channel. The theoretical transmission ranges of H-nodes and L-nodes are R_H and R_L, respectively. To reflect the dynamic nature of MANETs in practice, assume that transmission ranges may be 10% deviated from theoretical values. Hence, unidirectional links may exist not only in the link between H-nodes and L-nodes but in the link between two homogeneous nodes as well. To facilitate the discussion, the list of key notations described in Table I.

<table>
<thead>
<tr>
<th>Notation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n)$</td>
<td>$T(n) \cap {\text{H-node, L-node}}$</td>
</tr>
<tr>
<td>$D(n_i, n_j)$</td>
<td>The Euclidean distance between two node n_i and n_j.</td>
</tr>
<tr>
<td>$CH(g)$</td>
<td>The Cluster Head of L-node g_i.</td>
</tr>
<tr>
<td>$S(g)$</td>
<td>The state of L-node g_i.</td>
</tr>
<tr>
<td>ρ_L, ρ_H</td>
<td>density of L-node and H-node.</td>
</tr>
<tr>
<td>Deg L</td>
<td>The average degree of L-node.</td>
</tr>
<tr>
<td>Deg H</td>
<td>The average degree of H-node.</td>
</tr>
</tbody>
</table>

B. TBC Algorithm

In TBC algorithm, bidirectional link in the network can be discovered using the bidirectional table (BT). It can identify the nodes which is in its bidirectional links.

1) Neighbor Table (NT):

At first, it can identify the neighbors of each node in a two hop distance by broadcasting the control packet periodically. Each node broadcasts control packet containing the information of its type, ID, Distance, etc. The neighbors that are found represent the nodes learned by the received control packet. Each node constructs a NT and BT tables based on the received control packet.

Procedures for discovering BTs:

Step 1: Each node broadcast BND (Bidirectional neighbor discovery) control packet within two hops and notifies its neighbors.

Step 2: The received control packet BND will be used to build the NT, which contains the information about its neighbor’s position and type. As a result,

$$NT = N_H (n_i) \cap N_L (n_i).$$ \hspace{1cm} (1)

Step 3: Then all nodes are waiting for some time to gather the information about its neighbors and broadcast control packet again. In this step, the information about obtained neighbors also updated.

Step 4: On receiving that packet each node check whether its own information is present in the control packet. If it is present, a bidirectional link will be established between the corresponding node and the sender of the control packet. Then the sender node will be added into the BT. As a result,

$$BT = N_L (n_i) \cap N_H (n_i).$$ \hspace{1cm} (2)

2) Local Topology(LT):

To obtain the benefit of H-node, the cluster head is chosen as an H-node. It establishes a relationship between the H-node and L-node. Number of L-node within the coverage region of the cluster head (H-node) only participate in the clustering. All nodes build a LT table, that store local topology information based on exposed bidirectional links. After the LT table each node once again broadcast BND packet that is BNU (bidirectional neighbor update) to update the information about the nodes.

Three stage of L-node:

- L isolated: L-nodes which are not covered by any H-node.
- L member: L-nodes which are covered by its cluster head and form a bidirectional link.
- L gateway: L-nodes which are not covered by its cluster head.

Procedures for constructing TBC:

Step 1: Each L-node broadcasts L-node TBC initialization (LTI) packets to all H-nodes in the NT table. In that LTI packet the information about the BT is added. LTI packets will be broadcasted within the limited region due to its time-to-live (TTL) value.

Step 2: Each node waits for some time to gather the BT information and LTI packet. Based on the information in the received packet each node builds the LT table. The same process is performed by H-node. Each H-node broadcasts H-node TBC initialization (HTI) packets to all L-nodes within its coverage region.
Step 3: After sending the LTI packet as mentioned in step 1, L-nodes wait some time to receive the HTI packet from the H-node. Based on the information received, L-node builds a LT table.

Step 4: Each L-node selects a cluster head by using the LT table. The L-node sends a cluster registration (CR) packet to the selected cluster head. If an L-node is in the G-isolated state, No HTI packet received by the L-node and it does not have a cluster head. Hence it does nothing.

Step 5: To collect the CR packet, each cluster head wait for some time and rebuild the LT table for its cluster members. Cluster head broadcasts cluster head declare (CHD) packets to the L-nodes, which is in its coverage region.

Step 6: On receiving the CHD packet from cluster head, each L-node update information in its LT table.

3) TBC Maintenance:

In TBC, there are two reasons to maintain the link between the nodes. So TBC make a procedure for maintaining the links. Following reasons are make the TBC to enter into the procedure.

- If the node A goes out of coverage region of B, then
 the node A does not receive the control packet from node B.
- To form a new link between nodes.

Procedures for L-nodes to maintain TBC:

Step 1: The information in the NT and BT is updated in the L-node.

Step 2: if node A is the cluster head of node c, the maintenance happen to obtain the route to new cluster head.

4) Cluster Head Selection:

The rule for L–node (L_i) to select the cluster head is, if
N=0, L_i is not covered by any H-node. If N=1, L_i is covered by H-node. Otherwise, L_i is in the region of number of H node (N > 1). In this situation, it selects the cluster head based on the shortest path.

Procedure for forwarding packet:

Route request packet (RREQ) and route reply packet (RREP) is used for forwarding the packet. If source want to send the data to destination then it will check whether the route to destination is available in it cache if it present then it will send a data directly to the destination. Otherwise, to find a route it will send a RREQ packet to it neighbors. That RREQ packet is received by number of nodes.

If any node contains the route the destination then it will send a RREP to the source. If the route of RREQ is through the H-node then in the RREP packet from the node is not sent the RREP to the source. If the route of RREQ is through the H-node then in the RREP packet from the node is not send a RREP to the source. If the route of RREQ is through the H-node then in the RREP packet from the node is not send a RREP to the source. If the route of RREQ is through the H-node then in the RREP packet from the node is not send a RREP to the source. If the route of RREQ is through the H-node then in the RREP packet from the node is not send a RREP to the source.
head) it is a type 1 node. So from n13 the node n20 is not reachable then t will find a path from n13 to source node n7. Final path for RREP is n17,n13,n10,n5 and n7.

In fig.3 show the throughput increases when the transmission range of H-node decreases. In fig.4

B. Overhead of TBC protocol

Overhead of TBC can be calculated by the three components that is overhead of routing, overhead of BND packet and overhead of clustering.

\[
CO_{TBC} = CO_{ROUTING} + CO_{BND} + CO_{CLUSTER} \quad (4)
\]

Compare to the DSR and MC protocol TBC protocol overhead is less. In existing system DSR protocol is used it produce high overhead compare to TBC and MC. Then the overhead of clustering is calculated by the high power and low power node overhead \((CO_{H}, CO_{L})\).

\[
CO_{CLUSTER} = CO_{H} + CO_{L} \quad (5)
\]

\[
CO_{L} = CO_{CMR} + CO_{BNU} \quad (6)
\]

\[
CO_{H} = (f_{CR} + f_{BNU}) \cdot N_{H} \quad (7)
\]

\(CO_{CMR}\) means overhead caused by the cluster member registration in the network. \(CO_{BNU}\), it is a overhead that caused by the BNU packet. \(f_{CR}\) is a frequency of cluster registration.

Overhead of BND packet is calculated by the frequency of BND packet and the number of high power and low power nodes in the network \((N_{H}, N_{L})\).

\[
CO_{BND} = f_{BND} \cdot (N_{H} + N_{L}) \quad (7)
\]

Overhead of routing is calculated based on the overhead caused in the RREQ and RREP.

\[
CO_{ROUTING} = CO_{RREQ} + CO_{RREP} \quad (9)
\]

In fig.4 it show the overhead of two protocol TBC and MC in different number of H-nodes. In fig.5, show the throughput result when the number of H-node increases in the network. If H-node increases the throughput decreases in the network so the performance of the protocol is reduced. In fig.6 show the overhead of three protocol in different H-nodes in the network. DSR protocol overhead is high compare to the other two protocol. TBC protocol reduce the overhead in the network.

IV. CONCLUSION

In this paper, developed a TBC-based routing protocol named TRPH for power heterogeneous MANETs. Different transmission power is considered to be a double-edged sword because of its high power nodes in the network. TRPH protocol eliminates unidirectional links and also obtains benefit from high power nodes. TRPH routing scheme is to
avoid the high power node in the data packet forwarding. It reduces the interference raised by high power nodes. Compare to the DSR and MC protocol its overhead is minimized. With the increase of B-nodes the overhead is increased in the LRPH protocol. Future work lies in developing a technique to reduce the overhead in LRPH when the B-nodes are increased.

REFERENCES