
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 3 Issue 6, June 2014

2178

ISSN: 2278 – 1323 All Rights Reserved © 2014 IJARCET

Abstract—Software systems evolve into complex systems

every day. Software engineers usually use regression testing

over the models detect whether faults introduced into

Component Based models. The testing technique works by to

doing all existing test cases, but technique however require a lot

of time and efforts, depending on the size and complexity of the

component based system under test. This paper reviews some of

the test case minimization strategies that software engineers use

in CBSE Models

Index Terms— Test Cases, Component Based Software

Engineering, Test case Minimization, Regression Testing.

I. INTRODUCTION

A software component is a software building block that is

confirms to a component model and it can be independently

composed and deployed without modification according to

the composition standard [1].

Component-based software is a collection of self-contained

and loosely coupled components that allow plug and play [2].

The components may have been written in different

programming languages and executed on different

operational platforms, and distributed across geographic

distances. Some components may be developed in-house,

while others may be third-party or commercial off the shelf

(COTS) components, with the source code unavailable.

PROPERTIES OF COMPONENT-BASED SOFTWARE

A. Source code availability

When developing component-based software, developers

prefer, rather than implementing the code, to adopt COTS

components whenever suitable components are available [3,

4].

B. Distribution

With the development of Internet, more and more

component-based software is distributed across networks.

Different components will be designed, developed and

integrated in distributed environment.

C. Reusability

One of the main objectives of component-based software

engineering is to promote software reusability, so that it can

improve the quality of future products and at the same time,

Zenith Pankaj, Computer Science & Engineering, DeenbandhuChhotu

Ram University of Science and Technology.Sonipat, India,9034222352

Dr. SukhdipSingh(Assistant Professor), Computer Science &

Engineering, DeenbandhuChhotu Ram University of Science and

Technology. Sonipat, India.

reduce development costs.

II. COMPONENT BASED SOFTWARE TESTING

To ensure the delivery of quality software, effective and

efficient testing is a key part of software development. Test

methodologies [5] are generally divided into two types: black

box and white box. Black-box approach, such as random

testing and functional testing, in which do not require the

knowledge of implementation details, but when applied to

CBS systems they may encounter a problems similar to those

that found in testing of the traditional programs. In white-box

approach, internal structure of the program is tested, so in this

testing, firstly the program structure is examined and then

various test cases are derived based on the program logic.

DIFFICULTIES IN ADEQUATE TESTING AND MAINTENANCE FOR

COMPONENT-BASED SOFTWARE

There are some major factors that affect our testing and

maintenance activities.

A. Code availability

For COTS components, source code is very often not

available, and the interaction among components will have to

go through predefined component interfaces. The lack of

source code causes a lot of problems.

B. Performance and reliability analysis

Performance is one of the quality features that are heavily
affected by component-based software features. Reliability

and usability also need to be reexamined. To analyze these

quality features of component-based software, a key issue is

how to reuse the results provided by the software

components.

C. Adequacy

Test adequacy is one of the toughest issues in testing

component-based software. On one hand, not all traditional

test adequacy criteria can be used, especially for those source

code–dependent criteria. On the other hand, even though

some black-box based criteria can be adopted, the issue is: Do

we still want to apply those criteria?

D. Maintenance

When a component in a component-based software is

modified or upgraded, a maintenance activity occurs [6, 7].

Due to many of the characteristics of component-based

software, difficulties can be encountered when traditional

maintenance approaches are applied. The cost of

maintenance phase for conventional software as two-thirds of

the total cost and it can be still more for maintaining CBS.

Test Case Minimization Strategies in CBSE

Models: A Review

Zenith Pankaj, Dr. Sukhdip Singh

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 3 Issue 6, June 2014

2179

III. COMPONENT-ORIENTED SOFTWARE TEST TOOLS

Recently, a number of software test tools have been

developed to support test automation of software

components. Table I shows some different Types of Test

Tools and Tools Vendors[8]:

Types of Test Tools Test Tool Vendors Test Tools

Problem management tools

Test information management tools

Test suite management tools

White-box test tools

Test execution tools

Code coverage analysis tools

Regression testing tools

Rational Inc.

Microsoft Corp.

Rautional Inc.

Rational Inc.

SUN JavaTest,

McCabe & Associates

IBM

OC Systems

Rational Inc.

Mercury Interactive

Case Consult Corp.

OC Systems

IBM

ClearQust, ClearDDTS

PVCS Tracker

TestManager

TestFactory

JavaHarness

McCabe IQ2

IBM ATC

Aprob

Visual Test

WinRunner

Analyzer, Analyzer Java

Aprob

Regression Testing Tool

IV. REGRESSION TESTING FOR COMPONENT-BASED

SOFTWARE

Regression testing, which is aimed at ensuring that the

modified software still meets the specifications validated

before the modification activities, is critical to the success of

a component-based system. Regression testing [2] involves

many different issues, for instance, test-suite management

and regression-testing automation.

Regression testing for component-based software is

significantly different from regression testing for traditional

software. This is mainly because traditional software
maintenance is usually carried out by the same team;

therefore, the team has a full knowledge of the software. For

component-based software, maintenance is often carried out

by component providers. After that, users have to maintain

their systems according to the changes that the component

providers have made. Component providers have full control

of their components, and can therefore use traditional

approaches to maintain their components[9,10].

NEED OF COMPONENT BASED REGRESSION TESTING

A. Testing is a critical activity which occurs during the
maintenance stage of the software lifecycle. However, it

requires large amounts of test cases to assure the

attainment of a certain degree of quality. As a result, test

suite sizes may grow significantly.

To address this issue, Test Suite Minimization and
Reduction techniques have been proposed. However, suite

size reduction may lead to significant loss of fault detection.

To deal with this problem, many Algorithms have been

Suggested in the Literature for example Genetic

Algorithms, Greedy Algorithms and Heuristic Based

Approaches.

V. FUTURE SCOPE

1) Component based Testing can be performed using

Various tools available in Various Languages, For

Example JUNIT for Java under Netbeans Environment.

2) The Main task of this work is to Test all the components

in a selected System as a whole or in other words the

goal is to test the Integration of the components in the

system.

3) The first phase is to build Components of the system

which can be testing via Tools such as Junit.

4) The main task in the second phase is to design and

generate component test cases for the constructed test

models. An automated tool/program can be used for

generating of test cases.

5) Finally these components can be tested for Integration

after applying Test Case minimization algorithms.

6) Comparison of the Previously Generated Test Cases and

Minimized Integrated Test cases will be Performed for

Detection of Fault Tolerance and hence generation of

Optimal Test cases.

VI. CONCLUSION

From this survey report it has been concluded that

component-based software integration testing has some

challenges that is: i) the component distribution with no

source code, ii) heterogeneity of technology and the

specification, iii) data can be lost across an interface due to

informal and incomplete interface specification, iv)

complicatedness to find out dependencies between

Table I: Different Test Tools and Their Vendors

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 3 Issue 6, June 2014

2180

ISSN: 2278 – 1323 All Rights Reserved © 2014 IJARCET

components, v) inconsistency between the modules for

instance improper call, vi) integration between modules not

give the desired output, vii) data types and their valid range

mismatch between different modules.

In general there is a lack of tools, method and strategies

that covers the integration testing problem as a whole: from

defining the integration order to test case selection.

It can be concluded that if we use proper tool, methods and

strategies then overcome the component-based software

testing challenges. We use an approach to component and

their interactions modeling using UML interaction diagram,

component and their interface are specified by using UML

diagram.

 REFERENCES

[1] Pravin, Albert, and SubramaniamSrinivasan. "EFFECTIVE TEST

CASE SELECTION AND PRIORITIZATION IN REGRESSION

TESTING." Journal of Computer Science 9, no. 5 (2013): 654.

[2] GaoTao, Chuanqi, Bixin Li, and Jerry Gao. "A Systematic State-Based

Approach to Regression Testing of Component Software." Journal of

Software 8, no. 3 (2013): 560-571.

[3] Maragathavalli, Mrs P., and S. Kanmani. "Test Suite Minimization

using Hybrid Algorithm for GA generated Test Cases."

INTERNATIONAL JOURNAL OF COMPUTERS &

TECHNOLOGY 6, no. 1 (2013): 279-286.

[4] Parsa, Saeed, and AlirezaKhalilian. "On the Optimization Approach

towards Test Suite Minimization." International Journal of Software

Engineering and Its Applications (IJSEIA) 4 (2010): 15-28.

[5] Pressman, R., “Software Engineering: A Practitioner’s Approach”,

New York: McGraw-Hill, 2001.

[6] Cheesman, J. and J. Daniels, “UML Components: A Simple Process

for Specifying Component-Based Software”, Reading, MA:

Addison-Wesley, 2001.

[7] Sparling, M., “Lessons Learned Through Six Years of

Component-Based Development”, Communications of the ACM, Vol.

43, No. 10, pp. 47–53, October 2000.

[8] Weyuker, E. J., “Testing Component-Based Software: A Cautionary

Tale”, IEEE Software, Vol. 15, No. 5, pp. 54–59, September/October

1998.

[9] Cook, J. E., and J. A. Dage, “Highly Reliable Upgrading of

Components”, International Conference on Software Engineering, Los

Angeles, CA, pp. 203–212, 1999.

[10] Orso, A., et al., “Using Component Metacontents to Support the

Regression Testing of Component-Based Software”, Proc. of IEEE

International Conference on Software Maintenance (ICSM2001), pp.

716-725, 2001.

[11] Gallagher, Leonard, and Jeff Offutt. "Test sequence generation for

integration testing of component software." The Computer Journal 52,

no. 5 (2009): 514-529.

[12] Heineman, G. T. and W. T. Councill, “Component-Based Software

Engineering: Putting the Pieces Together”, Reading, MA:

Addison-Wesley, 2001.

[13] Sun Micro, “Enterprise JavaBeans Technology”,

http://java.sun.com/products/ejb/, 2002.

[14] Microsoft, “COM+ Component Model”,

http://www.microsoft.com/com, 2002.

[15] Object Management Group, “CORBA Component Model Joint

Revised Submission”, 1999.

