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 

Abstract— The paper develops a model for the optimal 

management of periodic deliveries of a given commodity called 

Periodic Vehicle Routing Problem (PVRP) incorporated time 

windows, fleet and driver scheduling, pick-up and delivery in 

the periodic planning.. The goal is to schedule the deliveries 

according to feasible combinations of delivery days and to 

determine the scheduling of fleet and driver and routing policies 

of the vehicles. The objective is to minimize the sum of the costs 

of all routes over the planning horizon. We model the problem 

as a linear mixed integer program and we propose a feasible 

neighbourhood search approach to solve the problem.  

 

Index Terms—Vehicle routing problem, scheduling, integer 

programming, optimal management, neighbourhood search 

 

I. INTRODUCTION 

Vehicle Routing Problem (VRP) is one of the important 

issues that exist in transportation system. This  is  a  well 

known  combinatorial optimization  problem  which  requires  
the  determination  of  an  optimal set  of  routes used  by  a 

fleet  of  vehicles to  serve a set of  customers,  taking  into  

account  various  operational constraints.VRP  was first 

introduced  by  [30]. Since then  many researchers have been 

working in this area to discover new methodologies in 

selecting the best routes in order to find the better solutions. 

There are a number of survey can be found in literature for 

VRP, such as [18], [16], [2], [13], [3], [21]. 

The classical vehicle routing problem (VRP) is defined as 

follows: vehicles with a fixed capacity Q must deliver order 

quantities iq  ( 1, ,i n  ) of goods to n customers from a 

single depot (i = 0). Knowing the distance ijd  between 

customers i and j ( , 1, ,i j n  ), the objective of the 

problem is to minimize the total distance traveled by the 

vehicles in a way that only  one vehicle handles the deliveries 

for a given customer and the total quantity of goods that a 
single vehicle delivers is not larger than Q [1]. 

In literature there are some variants of VRP which are 

grouped according to specific constraints. Some of the well 

known variants are: Capacitated VRP (CVRP), the vehicles 

are restricted to carry limited capacity; VRP with time 

windows (VRPTW), each customer is served within a 

defined time frame; multiple depots VRP (MDVRP), in this 

variant goods can be delivered to a customer from a set of 

depots; VRP with pick-up and delivery (VRPPD), goods not 

only need to brought from the depot to the customers, but also 
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must be picked-up at a number of customers and brought 

back to the depot. Taking into account several days of 

planning for routing problems is another variant of the VRP, 

known as the priodic VRP (PVRP). 

In PVRP, within a given time horizon, there is a set of 

customers needs to be visited once or several times. There 

would be a visiting schedules associated with each customer. 

A fleet of vehicles is available and each vehicle leaves the 
depot, serves a set of customers, when its work shift or 

capacity is over, returns to the depot. The problem is to 

minimize the total length of the routes travelled by the 

vehicles on the time horizon. This problem is very important 

in real world applications, such as, distribution for bakery 

companies [20] , blood product distribution [29], or pick-up 

of raw materials for a manufacture of automobile parts [15]. 

A survey on PVRP and its extensions can be found in 

[19]. Due to the complexity of the problem most of the works 

present heuristic approaches, nevertheless [22] proposed an 

exact method. [28] addressed a combined of heuristic and 

exact method for solving PVRP. 
Early formulations of the PVRP were developed by [4] 

and by [24] who proposed heuristics applied to waste 

collection problems. [27] use the idea of the generalized 

assignment method proposed by [11] and assign a visiting 

schedule to each vertex. Eventually a heuristic for the VRP is 

applied to each day. [25] developed a heuristic organized in 

four phases. Solution methods in these papers have focused 

on two-stage (construction and improvement) heuristics. [8] 

present another algorithm: The solution algorithm is a TS 

heuristic which, differently from the above heuristics, may 

allow infeasible solutions during the search process. 
Similarly, good results were obtained in the more recent work 

of  [10], [1], and [5] who provide specific practical 

applications of the PVRP. [23] used particle swarm 

optimization to tackle the problem. 

 [12] introduce the Period Vehicle Routing Problem with 

Service Choice (PVRP-SC) which allows service levels to be 

determined endogenously. They develop an integer 

programming formulation of the problem. 

 [9] presents modeling techniques for distribution 

problems with varying service requirements. [26] develop 

continuous approximation models for distribution network 
design with multiple service levels. These references show 

that continuous approximations can be powerful tools for 

strategic and tactical decisions when service choice exists. In 

continuous approximation models, aggregated data are used 

instead of more detailed inputs. 

[20] present PVRP with time windows (PVRPTW). The 

problem requires the generation of a limited number of routes 

for each day of a given planning horizon. The objective is to 

minimize the total travel cost while satisfying several 

constraints. 
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This paper concerns with a comprehensive model for the 

PVRP incorporated with time windows, fleet and driver 

scheduling, pick-up and delivery (PVRFDPDTWP) . The 

basic framework of the vehicle routing part can be viewed as 

a Heterogeneous Vehicle Routing Problem with Time 

Windows (HVRPTW) in which a limited number of 
heterogeneous vehicles, characterized by different capacities 

are available and the customers have a specified time 

windows for services. We propose a mixed integer 

programming formulation to model the problem. A feasible 

neighbourhood heuristic search is addressed to get the integer 

feasible solution after solving the continuous model of the 

problem. 

Section 2 reviews the integer programming formulation of 

the PVRP with time windows from [20]. Section 3 describes 

the mathematics formulation of the (PVRFDPDTWP). 

Feasible neighbourhood heuristic search is given in Section 

4. The algorithm is described in Section 5. Finally Section 6 
describes the conclusions. 

  

II. MODEL OF THE PVRPTW 

The formulation of the model is adopted from Nguyen et 

al. (2011). The VRP is defined in graph   = ( ,  ) ,  where  

 =  {0, 1, ... , n} is the  vertex  set  and   = {(i, j) :  i, j ∈  , 

i  j} is the  edge set.  A travel  cost 
ijc   is associated with 

every edge (i, j) ∈  . The depot vertex is indexed by 0.  c = 

 \{0} is the set of customer  vertices.  Each vertex  i ∈ c  has 

a demand qi  ≥ 0 on each day of the planning horizon of  

days, a service time si ≥ 0, a time window [ei, li],  where ie   is 

the  earliest time service may begin and li  is the  latest  time, 

and requires a fixed number of visits if  to be performed 

according to one of the allowable visit-day  patterns in the list 

i. The time window specifying the interval  vehicles leave 
and return  to the depot is given by [e0, l0]. A fleet of m 

vehicles, each with capacity  Qk is based at the depot.  

Vehicles are grouped into set .  Vehicle routes are restricted  
to a maximum  duration  of Dk , k = 1, ..., m. 

Assume that the vehicle fleet is  homogen  with Qk  = Q 

and a common duration  restriction  Dk  = D, ∀k = 1, ..., m.  

The PVRPTW can then be seen as the  problem  of generating  

(at  most)  m vehicle routes  for each day  of the  planning 

horizon,  to  minimize  the total  cost  over the entire  planning  

horizon,  such  as 1) each vertex i is visited the required 

number  of times, fi, corresponding  to a single pattern of visit 

days chosen from i, and  is serviced within  its time  window, 
i.e., a vehicle may arrive  before ei  and  wait  to begin service; 

2) each route  starts  from the depot, visits the vertices 

selected for that day, with a total demand not exceeding Q, 
and returns  to the depot after a duration  (travel  time) not 

exceeding D. 

Let art  be 1 if day  t ∈   belongs to  pattern r, and  0 

otherwise.   Route-selection, pattern-selection, and 

continuous timing decision variables are used in the 

formulation: 

 

  

 

 

t

ikw  indicates the service starting time for vehicle k   at 

customer i ∈ c on day t ∈  

 

Let M be an arbitrary large constant.  The PVRPTW can then 

be formulated  as 

 

Minimize                                          (1)
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                                               (14)
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The objective function (1) minimizes the total travel cost. 

Constraints (2) ensure that a feasible pattern is assigned to 
each customer.  Constraints (3) enforce flow conservation 

ensuring  that   a  vehicle arriving  at  a  customer  on  a  given 

day,  leaves that customer on the  same day.   Constraints (4) 

guarantee  that each customer  is visited  on the  days 

corresponding to the assigned pattern, while Constraints (5) 

make sure that the number of vehicles used on each day does 

not exceed m.  Relations  (6) are subtour  elimination 

constraints. Constraints (7) ensure that  each vehicle is used at 

most once a day, while (8) guarantee  that the load charged on 

a vehicle does not exceed its capacity.  Constraints (9) 

enforce time feasibility, i.e., vehicle k cannot start  servicing j 

before completing service at the previous customer i and 

traveling from i to j, i.e., not before 
t

ik i ijw s c  . 

Constraints (10) ensure that customer  time window 

restrictions are respected,  while (11) constrains the route 

length.  Constraints (12), (13), and (14) define the sets of 

decision variables. 
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III. MATHEMATICAL FORMULATION OF PVRFDPDTWP 

We denote the planning horizon by T and the set of drivers 

by D. The set of workdays for driver l D  is denoted by 

lT T . The start working time and latest ending time for 

driver l D  on day t T  are given by 
t

lg  and 
t

lh , 

respectively. Let DI and DE denote the set of the internal and 

external drivers ( I ED D D  ). For each internal driver 

Il D , let H denote the maximum weekly working 

duration. We denote the maximum elapsed driving time 

without break by F and the duration of a break by G 

(according to the EU driver legislation). 

Let K denote the set of vehicles. For each vehicle k K , 

let Qk and Pk denote the capacity in weight and in volume, 

respectively. We assume the number of vehicles equals to the 

number of drivers. Denote the set of n customers (/nodes) by 

 1,2, ,N n  . Denote the depot by  0, 1n . Each 

vehicle starts from  0  and terminates at  1n  . Each 

customer i N  specifies a set of days to be visited, denoted 

by iT T  . On each day it T , customer i N  requests 

service with demand of 
t

iq  in weight and 
t

ip  in volume, 

service duration 
t

id  and time window  ,i ia b . Note that, for 

the depot  0, 1i n   on day t, we set 

0t t t

i i iq p d   . Denote the set of preferable vehicles for 

visiting customer i by Ki ( iK K ) and the extra service 

time per pallet by e if a customer is not visited by a preferable 
vehicle. The travel time between customer i and j is given by 

ijc . Denote the cost coefficients of the travel time of the 

internal drivers by A and the working duration of the external 
drivers by B. 

We define binary variable 
t

ijkx  to be 1 if vehicle k travels 

from node i to j on day t, binary variable wt i to be 1 if 

customer i is not visited by a preferred vehicle on day t. 

Variable 
t

ikv  is the time that vehicle k visits node i on day t. 

Binary variable 
t

ikz  indicates whether vehicle k takes a break 

after serving customer i on day t. Variable 
t

iku  is the elapsed 

driving time for vehicle k at customer i after the previous 

break on day t. Binary variable 
t

lky  is set to 1 if vehicle k is 

assigned to driver l on day t. Variables 
t

lr and 
t

ls  are the total 

working duration and the total travel time for driver l on day 

t, respectively. 

This notations used are given as follows : 

Set: 

T  The set of workdays in the planning horizon, 

DI  The set of internal drivers, 

DE  The set of external drivers, 

D  The set of drivers D = DI ∪ DE, 

Tl  The set of workdays for driver l ∈ D, 

K  The set of vehicles, 

N  The set of customers, 

N0  The set of customers and depot N0 = {0, n + 1} 

∪ N, 

Ki  The set of preferable vehicles for customer i ∈ 

N, 

Ti  The set of days on which customer i N  

orders, 

Parameter: 

Qk  The weight capacity of vehicle k K , 

Pk  The volume capacity of vehicle k K , 

cij  The travel time from node 0i N  to node 

0j N , 

[ai, bi]  The earliest and the latest visit time at node 

0i N , 

t

id   The service time of node 0i N  on day 

it T , 

t

iq  The weight demand of node 0i N  on day 

it T , 

t

ip  The volume demand of node 0i N  on day 

it T , 

e  The extra service time per pallet when a 

non-preferable vehicle is used, 

[
t

lg , 
t

lh ]  The start time and the latest ending time of 

driver l D  on day t T , 
t

i              Pick up quantity for customer i on day it T , 

t

i              Delivery quantity for customer I on day it T , 

H  The maximum working duration for each 

internal driver over the planning horizon, 

F  The maximum elapsed driving time without 
break, 

G  The duration of the break for drivers, 

1K   The cost factor on the total travel time of 

internal drivers, 

2K   The cost factor on the total working duration 

of the external drivers, 

Variables: 

t

ilkx   Binary variable indicating whether vehicle 

k K  travels from node 0i N to 0j N  

on day t T , 
t

iw   Binary variable indicating whether customer 

0i N  is visited by a non-preferable vehicle 

on day t T , 
t

ikv   The time at which vehicle k K  starts 

service at node 0i N  on day t T , 
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t

ikz   Binary variable indicating whether vehicle 

k K  takes break after serving node 

0i N  on day t T , 

t

iku   The elapsed driving time of vehicle k K  at 

node 0i N  after the previous break on day 

t T , 
t

lky   Binary variable indicating whether vehicle 

k K  is assigned to driver l D  on day 

t T , 
t

lr   The total working duration of driver l D  

on day t T , 
t

ls  The total travel distance of driver l D  on 

day t T , 
t

jk            Number of pick up demand of customer j served by 

vehicle k K on day t T  
t

jk            Number of delivery demands of customer j served 

by vehicle k K on day t T  

 

The mathematical formulation for this problem is presented 

as follows: 

min                  (15)

  (10) 

Subject to: 

0

1t

ijk

k K j N

x
 

 ,                                   (16)

     i  N, t  Ti (11) 

0\ i

t t

ijk i

k K K j N

x w
 

                              (17)

  i  N, t  Ti (12) 

0

t t

i ijk k

i N j N

q x Q
 

                                  (18) 

 

(19)                                       

  k  K, t  T (13)

   

  k  K, t  T (14) 

(1 )t t t t

jk ik ij ijk iku u c M x Mz       

                       (20)

 i, j  N0,  k  K, t  T (15) 

(1 )t t

jk ij ijku c M x  
 

                      (21)   
                      

 
(22)                

 i, j  N, k  K, t  T (16)  

     i  N0,  k  K, t  T (17) 

    
(1 )t t t t t t t

jk ik i i j ij ik ijkv v d e p w c G z M x                     

i, j  N0,  k  K, t  T                                                    (23)
 (18) 

t

i ik ib v a  ,     i  N,  k  K, t  Ti                               (24)

 (19) 

0 ( )t t t

k l lk

l D

v g y


  k  K, t  T ,                                (25)

 (20) 

1, ( )t t t

n k l ik

l D

v h y



  k  K, t  T,                          (26) 

 
           (27)

 (21) 

 
                (28)

  l  DI, k  K, t  Ti (22) 

  l  D, k  K, t  Ti (23) 

l

t

l

t T

r H


 , l  DI                                                    (29)

 (24) 
t t

jk j

k K

 


  , ,j N t T                                        (30) 

t t

jk j

k K

 


 , ,j N t T                                            (31) 

, , , {0,1}t t t t

ijk i ik lkx w z y 
 

                              ,i, j  N0, l  D,  k  K, t  T              (32)
 (27) 

, , , 0t t t t

ik ik l lv u r s  , i, j  N0, l  D,  k  K, t  T    (33)

 (28) 

, {0,1,2,...}t t

jk jk   ,              (34) 

The objective function (15) minimizes weighted sum of 

the travel time of the internal drivers and the working 

duration of the external drivers over the planning horizon. 

Constraints (16) state that each customer must be visited 

by one vehicle on each of its delivery days. Constraints (17) 

define whether each customer is visited by a preferable 

vehicle. Constraints (18-19) guarantee that the vehicle 

capacities are respected in both weight and volume.  
Constraints (20-21) define the elapsed driving time. More 

specifically, for the vehicle (k) travelling from customer i to j 

on day t, the elapsed driving time at j equals the elapsed 

driving time at i plus the driving time from i to j (i.e., 
t

jku  ≥ 

t

iku  + cij ) if the vehicle does not take a break at customer i 

(i.e., 
t

ikz = 0); Otherwise, if the vehicle takes a break at 

customer i (i.e., 
t

ikz  = 1), the elapsed driving time at j will be 

constrained by (15) which make sure it is greater than or 

equal to the travel time between i and j (i.e., 
t

jku  ≥ cij). 

Constraints (22) guarantee that the elapsed driving time never 

exceeds an upper limit F by imposing a break at customer i 

(i.e., 
t

ikz = 1) if driving from customer i to its successor 

results in a elapsed driving time greater than F. 

Constraints (23) determine the time to start the service at 

each customer. If j is visited immediately after i, the time 
t

jkv to start the service at j should be greater than or equal to 
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the service starting time 
t

ikv  at i plus its service duration 
t

id , 

the extra service time 
t

ie p  if i is visited by an inappropriate 

vehicle (i.e., 
t

jw  = 1), the travel time between the two 

customers cij , and the break time G if the driver takes a break 

after serving I (i.e., 
t

ikz  = 1). Constraints (24) make sure the 

services start within the customers’ time window. 

Constraints (25-26) ensure that the starting time and 

ending time of each route must lie between the start working 

time and latest ending time of the assigned driver. Constraints 

(27) calculate the total travel time for each internal driver. 

Constraints (28) define the working duration for each driver 

on every workday, which equals the time the driver returns to 

the depot minus the time he/she starts work. Constraints (29) 

make sure that the internal drivers work for no more than a 
maximum weekly working duration, referred to as 37 

week-hour constraints. Constraints (30 – 31) define the pick 

up and delivery for each customer. Constraints (32-34) define 

the binary and positive variables used in this formulation.  

 

IV. NEIGHBOURHOOD SEARCH 

It should be noted that, generally, in integer programming 

the reduced gradient vector, which is normally used to detect 

an optimality condition, is not available, even though the 

problems are convex. Thus we need to impose a certain 

condition for the local testing search procedure in order to 

assure that we have obtained the ―best‖ suboptimal integer 
feasible solution. 

Further Scarf [14]  proposed a quantity test to replace the 

pricing test for optimality in the integer programming 

problem. The test is conducted by a search through the 

neighbours of a proposed feasible point to see whether a 

nearby point is also feasible and yields an improvement to the 

objective function. 

Let []k be an integer point belongs to a finite set of 

neighbourhood N([]k) We define a neighbourhood system 

associated with []k, that is, if such an integer point satisfies 
the following two requirements 

1. if []j  N([]k) then []k  []j, j   k.  

2. N([]k)  = []k  + N(0)  
 

With respect to the neighbourhood system mentioned 

above, the proposed integerizing strategy can be described as 

follows. 

Given a non-integer component, xk, of an optimal vector, 

xB. The adjacent points of xk, being considered are [xk] dan 

[xk] + 1. If one of these points satisfies the constraints and 

yields a minimum deterioration of the optimal objective 
value we move to another component, if not we have 

integer-feasible solution. 

Let [xk] be the integer feasible point which satisfies the 

above conditions. We could then say if [xk] + 1 N([xk]) 
implies that the point [xk] + 1 is either infeasible or yields an 

inferior value to the objective function obtained with respect 

to [xk]. In this case [xk] is said to be an ―optimal‖ integer 

feasible solution to the integer programming problem. 

Obviously, in our case, a neigbourhood search is conducted 

through proposed feasible points such that the integer 

feasible solution would be at the least distance from the 

optimal continuous solution. 

 

V. THE ALGORITHM 

After solving the relaxed problem, the procedure for 

searching a suboptimal but integer-feasible solution from an 

optimal continuous solution can be described as follows. 

Let 

x = [x] + f,    0  f  1 
be the (continuous) solution of the relaxed problem, [x] is the 

integer component of non-integer variable x and  f  is the 

fractional component. 

Stage 1. 

Step 1. Get row i* the smallest integer infeasibility, such 

that  
*

min{ ,1 }
i i i

f f     

              (This choice is motivated by the desire for minimal 

deterioration in the objective function, and clearly 

corresponds to the integer basic with smallest 

integer infeasibility). 

Step 2. Do a pricing operation  

 
1

* *

T T

i i
v e B


  

Step 3. Calculate 
*

T

ij i j
v   

 With  corresponds to 

min
j

ij

jd



  
 
  

 

Calculate the maximum movement of nonbasic j at 

lower bound and upper bound. 
 Otherwise go to next non-integer nonbasic or 

superbasic j (if available). Eventually the column j* 

is to be increased form LB or decreased from UB. If 

none go to next i*. 

Step 4. 

  Solve  Bj* = j*  for  j* 
Step 5. Do ratio test for the basic variables in order to stay 

feasible due to the releasing of nonbasic j* from its 

bounds. 

Step 6. Exchange basis  

Step 7.   If row i* = {} go to Stage 2, otherwise 
 Repeat from step 1. 

Stage 2. Pass1 : adjust integer infeasible superbasics by 

fractional steps to reach complete integer feasibility. 
              Pass2 : adjust integer feasible superbasics. The 

objective of this phase is to conduct a highly 

lovalized neighbourhood search to verify local 

optimality. 

 

VI. CONCLUSIONS 

This paper was intended to develop efficient technique for 

solving one of the most economic importance problems in 

optimizing transportation and distribution systems. The aim 

of this paper was to develop a model of Periodic vehicle 

Routing with Time Windows, Fleet and Driver Scheduling, 

Pick-up and Delivery Problem This problem has additional 

constraint which is the limitation in the number of vehicles. 

The proposed algorithm employs nearest neighbor heuristic 

algorithm for solving the model. This algorithm offers 

appropriate solutions in a very small amount of time 
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