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Abstract— The NFBGs with exponentially decreasing second-

order dispersion allows nearly chirp free and pedestal free pulse 

compression in a short length, leading to novel all fiber 

compression device. It is based on the NLSE approximation that 

neglects the effect of higher order dispersion and the PBGs. 

NLSEs to have a complete study of self similar chirped optical 

pulse compression in the NFBGs. For the effect of higher order 

dispersion, to found that although the second-order dispersion is 

exponentially decreasing along the grating, the contributions of 

higher order dispersion can remain small throughout the 

compression process if the initial contribution of higher order 

dispersion is small. The compression of both the hyperbolic 

secant and Gaussian shaped pulses and the effect of variation in 
the initial pulse width on the optical pulse compression. 

Index terms— Index Terms—Compression, Dispersion, 

Nonlinear fiber Bragg grating (NFBG), Photonic band gap 

(PBG) 

 

I.  INTRODUCTION  

Generation of short pulses has always been of great 

scientific and technological interests. Ultra short pulses in the 

near infrared spectral region are required for various 

applications. For instance, in telecommunication applications, 

ultra short pulses are required in order to increase transmission 

capacity to 160 Gb/s and beyond. It is in general difficult to 

produce very short pulses even from the best available laser 

sources [1]. Hence, optical pulse compression techniques are 

important for the generation of ultra short optical pulses.  

There are two widely used techniques to achieve pulse 
compression; namely soliton pulse compression and adiabatic 

pulse compression techniques. In soliton pulse compression 

technique, the compressed pulses suffer from significant 

pedestal generation, leading to nonlinear interactions between 

neighboring solitons. Adiabatic pulse compression technique 

has been used to generate a stable train of pedestal free and 

non-interacting solitons. However, this technique requires 

long length of fiber, on the order a few kilometers, since the 

fiber has relatively small group-velocity dispersion (GVD).  
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It has been shown that the optical periodic structures or 
photonic band gap (PBG) materials such as fiber Bragg 
gratings (FBGs) have relatively large dispersion (six orders of 
magnitude larger) compared to silica fibers. Hence, the soliton 
dynamics could be studied on length scales of centimeters. It is 
suggested that chirped solitary waves can be compressed more 
efficiently if the dispersion decreases approximately 
exponentially. Recently, self-similar analysis has been utilized 
to study linearly chirped pulses in fiber amplifiers. The large 
dispersion in the spectral vicinity of the grating stop band leads 
to a very compact device that could be only centimeters long as 
compared to kilometers long if optical fibers are used. 

II. GAUSSIAN AND SECANT PULSES 

The two most widely used pulses in optical fiber 

communications is Gaussian pulse and hyperbolic secant 
pulse. These two pulses plays an important role in determining 

the effects namely nonlinear and dispersive effects which 

makes the pulses travel through the fiber in an efficient 

manner. The shape of gaussian and secant pulses are in a 

similar fashion. In optics we use these pulses on the basis of 

power level and time width of the pulse. Here, the power of 

Gaussian pulse is more compared to that of the secant pulse. 

Similarly the time period of the pulse also differs in the same 

manner. The peak power P0 of the Gaussian and Secant pulses 

are given as 4857 W and 3849 W respectively. The time period 

of the Gaussian and Secant pulse are given as T0= 10.586 ps 

and T0 = 10 ps [2]. The shape of the graph is important design 
for the NFBG. So we must include the shape of the graph in 

the analysis of the pulse compression.  The graph of a 

Gaussian is a characteristic symmetric bell curve shape that 

quickly falls off towards zero when we introduce some 

dispersion in the fiber. The parameter is the height of the 

curve's peak, b is the position of the center of the peak, and c 

(the standard deviation) controls the width of the "bell". 

 
Fig.1: Graph of Secant and Gaussian shaped pulse 
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III. COMPRESSION GAUSSIAN AND SECANT PULSES 

A. Flow diagram of pulse compression 

The flow diagram of Gaussian pulse and hyperbolic 

secant pulse compression is shown below. First we set the 

time period of the pulses and power levels which determines 

that the pulse is either of Gaussian pulse and hyperbolic 

secant pulse [3]. In the next step we set the values for Chirp 

parameter (C) and ratio of frequency detune to coupling 
coefficient (b). The ratio of frequency detune to coupling 

coefficient (b) is an important parameter for compressing the 

pulse, so it must be carefully chosen for the compressing 

techniques. For effective compression of the pulse choose 

the value of b less than 3. If we choose the value of b greater 

than 3 the pulse may be distorted in the fiber or 

uncompressed.  
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Fig.2: Flow diagram Representation 

B. Methodology Used 

The compression of these pulses can be done with the 

analysis of Nonlinear Schrodinger Equation (NLSE) which 

is a partial differential equation of integrable form. There is 

numerous methods available for solving the NLSE, but here 

we are going to use Split Step Fourier Method [4]. This 

method is one of the simplest methods available for solving 

this type of partial differential equation. In this we are going 
to split the fiber into small parts, where we consider each 

small part as one unique fiber length and applying Fourier 

Transform for these small parts and also applying Inverse 

Fourier Transform makes the equation to solve in an 

efficient manner. Similarly the small part is split into three 

parts like two linear components and one nonlinear 

component for further analysis.       

The Split Step Fourier Method can be demonstrated in 

easier manner with the help of block diagram representation 

as follows. Hence the numerical split step Fourier method is 

utilized, which breaks the entire length of the fiber into small 
step sizes of length “h” and then solves the nonlinear 

Schrödinger equation by splitting it into two halves , the 

linear part (dispersive part) and the nonlinear part over z to z 

+ h. 

 
                  

X                                                                                             Y 

Fig.3 : Split Step Fourier Method 

IV. SIMULATION RESULTS 

A. Compression of Gaussian Pulse 

Case I 

b=1.0, To=10.586 ps, C=0, 

b- ratio of frequency detune to coupling coefficient 

To- Pulse width, C- initial chirp  

 

 
Fig.4 : Input pulse and Compressed output pulse 
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Fig.5: Pulse evolution profile 

The Case I results shows that the Gaussian pulse is said to 

be compressed for minimum value of b which is an important 

design parameter of the proposed optical pulse compressor. In 

the output compressed Gaussian  pulse form the width of the 

pulse is reduced when compared to the input pulse, similarly 

the amplitude of the pulse is increased which proves that the 
above Gaussian pulse is compressed. 

 

Case II 

b=5.0, To=10.586 ps, C=0, 

b- ratio of frequency detune to coupling coefficient 

To- Pulse width, C- initial chirp  

 
Fig.6 : Input pulse and Distorted output pulse 

From the Case II results we can see that the Gaussian pulse 

is said to be uncompressed for almost maximum value of b. In 

the output pulse form the width of the pulse is not reduced 

when compared to the input pulse, similarly the amplitude of 

the Gaussian pulse is decreased which proves that the above 

pulse is not compressed. So as the value of b increases the 
compression of the pulse decreases. In other words we can say 

that Gaussian pulse is distorted when we increase the value of 

b. 

 
Fig.7: Pulse evolution profile 

B. Compression of Hyperbolic Secant pulse 

 

Case III 

b=1.0, To=10 ps, C=0, 
b- ratio of frequency detune to coupling coefficient 

To- Pulse width, C- initial chirp 

 
Fig.8 : Input pulse and Compressed output pulse 

 
Fig.9: Pulse evolution profile 

The Case III results shows that the Hyperbolic Secant pulse 

is said to be compressed for minimum value of b which is an 
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important design parameter of the proposed optical pulse 

compressor. In the output compressed the Hyperbolic Secant  
pulse form the width of the pulse is reduced when compared to 

the input pulse, similarly the amplitude of the pulse is 

increased which proves that the above the Hyperbolic Secant 

pulse is compressed. 

 

Case IV 

b=5.0, To=10 ps, C=0, 

b- ratio of frequency detune to coupling coefficient 

To- Pulse width, C- initial chirp 

 
Fig.10 : Input pulse and Distorted output pulse 

 
Fig.11: Pulse evolution profile 

From the Case IV results we can see that the Hyperbolic 

Secant pulse is said to be uncompressed for almost maximum 

value of b. In the output pulse form the width of the pulse is 

not reduced when compared to the input pulse, similarly the 

amplitude of the Hyperbolic Secant pulse is decreased which 

proves that the above pulse is not compressed. So as the value 

of b increases the compression of the pulse decreases. In other 

words we can say that Hyperbolic Secant pulse is distorted 

when we increase the value of b. 

 

C. FWHM Tabulation Results 

The compression of Gaussian and Hyperbolic Secant pulses 

can be found out by can be found by comparing the width of 

the input pulse as well as the output pulse with the parameter 

called FWHM which measures the width of the pulse at its half 
maximum value. From the tabulation results we can able to 

find out whether the pulse is compressed or not. If the FWHM 

of the output pulse is lesser than the FWHM of the input pulse 

then it is said to be compressed, if it is not then it is said to be 

uncompressed or distorted. 

TABLE I. Compression of Gaussian pulse  

(b vs FWHM(ps)) 

 

S. No Value of b FWHM (ps) 

1 0.5 3 

2 1.0 5 

3 1.5 7 

4 2.0 15 

5 2.5 23 

6 3.0 29 

7 3.5 35 

8 4.0 39 

9 4.5 43 

10 5.0 45 

 

Note: FWHM of input pulse = 25 ps 

 

TABLE II. Compression of Hyperbolic Secant pulse     

 (b vs FWHM(ps)) 
 

S. No Value of b FWHM (ps) 

1 0.5 1 

2 1.0 5 

3 1.5 13 

4 2.0 23 

5 2.5 29 

6 3.0 35 

7 3.5 39 

8 4.0 41 

9 4.5 45 

10 5.0 47 

Note: FWHM of input pulse = 23 ps 

 

 

V. CONCLUSION 

Thus the Hyperbolic secant and Gaussian shaped 

pulses can be compressed by using split step method by 

solving the Nonlinear Schrodinger Equation. Here second 
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order dispersion plays an important role in determining the 

compression of the pulse. Higher order dispersion increase 
when the second order dispersion increases along the fiber, so 

the pulse is uncompressed in the fiber. The Gaussian pulse and 

Secant pulse are two most widely used pulses in optical fiber 

communication, so it is necessary to compress the pulse in an 

efficient manner. Since of value of b decides  the compression 

of the pulse it is important to maintain the b value in the 

compressor, so that the pulse can be compressed in a efficient 

manner. FWHM also used to know whether the pulse is 

compressed or not. So for the pulse to be compressed the 

FWHM should be minimum. 
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