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Abstract— The optical pulse compression is analyzed by 

NLSE using Fiber Bragg Grating (FBG) with the help of second 

order dispersion. A comprehensive study on the effect of 

frequency detune, coupling coefficient, figure of merit, and 

compression factor is done. The variation of frequency detuning 

and coupling coefficient with respect to the length of the grating 

is also studied. The compression and distortion of the optical 

pulses is studied with the concept of Full width at half maximum 

(FWHM) is also done. FWHM plays an important role in 

determining the compression of optical pulses. From the FWHM 

results we can able to obtain the rate at which the pulse is 
compressed. 

Index terms—compression,  dispersion, FBG, FWHM, optical 

pulse 

I.  INTRODUCTION  

In the areas of telecommunications, photonics, ultrafast 

spectroscopy ultrashort pulses plays a significant role. The two 

commonly used optical pulse compression schemes are the 

higher order soliton compression and the adiabatic soliton 
compression. Higher order soliton compression suffers from 

significant pedestal generation in optics which causes 

intersymbol interference in telecommunication systems. 

Adiabatic soliton compression needs slowly varying 

dispersion and the maximum compression factor (CF) is 

typically limited to about 20 [1]. Recently, self-similar optical 

pulses have attracted much attention since the linear chirp 

facilitates efficient pulse compression for the linearly chirped 

self-similar solitary waves in optical fiber amplifiers [2], [3]. 

The generation of  linearly chirped parabolic pulses which 

achieves efficient pulse compression by using a photonic 
bandgap (PBG) fiber [4]. However, because of  small group-

velocity dispersion (GVD) of optical fibers, this scheme 

requires of fibers of long lengths. A more attractive solution to 

achieve pulse compression is to use a highly dispersive 

nonlinear medium such as a fiber Bragg grating (FBG). 

Nonlinear Schrodinger Equation which models the optical 

pulse propagation in Nonlinear FBG.  
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Higher order dispersion effects are neglected in the NLSE 

approximation, only second order dispersion 𝛽2
𝑔

= 
𝜕2𝛽

𝜕𝜔2  is 

included [5]. The pulse width T(z) and second order dispersion 

𝛽2
𝑔

 decreases exponentially at the same rate as the second-order 
dispersion length LD2 which also decreases in the similar 
manner. 

II. EFFECTS RELATED TO PULSE COMPRESSION 

A. Ratio of Frequency Detune to Coupling Coefficient 

The ratio b of frequency detune δ(z)  and the coupling 

coefficient κ(z) is normally discussed in this section. It plays 
an important role in determining the compression of a soliton 

pulse. The range of b value should be in the range of 1.5 ≤ b ≤ 

3 effective compression. For both the hyperbolic secant and 

Gaussian-shaped pulses, the compressed pulses experience 

severe distortions at large values of, such as b > 4.5. In 

mathematical representation it can be given as  

b =
𝛿(𝑧)

𝜅(𝑧)
                            (1) 

The ratio of the frequency detune to the coupling 

coefficient must be a constant for the nonlinear coefficient to 

be a constant. In the following, it shows that there is an 

optimum range of for quality optical pulse compression. First, 

since the proposed optical pulse compressor operates in the 

transmission region, it is necessary to ensure that the pulse 

spectrum does not overlap significantly with the reflection 

spectrum of the grating. 
 

B. Figure of Merit 

The figure of merit M is useful in the design and analysis of 

the proposed optical compressor namely Fiber bragg grating 

(FBG). Since the effect of PBG is not included in the NLSE 

approximation, the optical pulse can continue to compress as 

long as the second-order dispersion decreases exponentially. 

However, in optical pulse compression, the pulse bandwidth 

will broaden significantly. In real FBGs, the spectrum of the 

self-similar pulse will eventually extend into the Photonic 

bandgap (PBG) of the FBG during compression. The frequency 

components that fall into the PBG will then be reflected rather 

than transmitted by the NFBG. The figure of merit M which is 
the ratio of the second-order and third-order dispersions to 

measure the impact of higher order dispersion.  
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The figure of merit is expressed as 

M = 
𝐿𝐷2

𝐿𝐷3
=

𝑇 𝑧2 /|𝛽2
𝑔

|

𝑇(𝑧2)/|𝛽3
𝑔

|
    = 

3|𝛽20 |𝑏 𝑏2−1

𝑇0𝛽1
                    (2) 

Obviously for optimum pulse compression, M should be as 
small as possible. Note that the value of M is proportional to 
β20 (second order dispersion coefficient) and b, but is inversely 
proportional to the initial pulse width parameter T0. 

C. Compression Factor(CF) 

The Compression Factor that can be obtained from the 

FBG can be determined by the following equation: 

𝐶𝐹 = 𝑒𝑥𝑝 𝜎𝐿  =  
𝜂∆𝑛𝜋

2∆𝑛

(𝑏2−1)
3

2 |𝛽20|

𝛽1
2  

                                     ≤
𝜂0.01𝜋

2∆𝑛

(𝑏2−1)
3

2 |𝛽20 |

𝛽1
2         (3) 

where it is used constraint Δn ≤ 0.01 to obtain the 

inequality. Equation (3) shows that the maximum CF is 

determined by Δn, the value of b and β20. For large CF, the 

parameters of b and β20 should be chosen as large as possible. 

However from (2), the figure of merit also increases with of b 

and β20. Thus, the quality of compressed pulses will decrease 

if we increase the CF by increasing of b and β20 . However, if 

the higher order dispersion effect is important such as the 

cases when and are chosen to maximize the CF. 

To achieve the exponentially decreasing second-order 

dispersion, one or more of the grating parameters, such as the 
average refractive index, index modulation depth and grating 

period, must vary exponentially along the grating length. We 

have also approximated the exponential decreasing dispersion 

profile by a number of gratings with constant dispersions. 

Then, we carried out a comprehensive study of the effect of 

the ratio of frequency detune to coupling coefficient, grating 

length, initial chirp, initial second-order dispersion, and initial 

pulsewidth on the compression of input chirped pulse, 

respectively. 

D. Full width at half maximum(FWHM) 

The Full width at half maximum (FWHM) is used to 

measure the width of the pulse when the pulse does not sharp 

edges in the half maximum value or power of the pulse. In 

pulse compression FWHM plays an important role in 

determining whether the pulse is compressed or not. Here, the 

FWHM of the input pulse is taken into account and noted as 

well, after the effective compression of the optical pulse at the 
output the FWHM is noted again for the compressed output 

pulse. If the FWHM of the compressed output pulse is lesser 

than the input pulse’s FWHM, then it is said to be compressed. 

III. PROPOSED METHODOLOGY  

The nonlinear Schrodinger equation (NLSE) is a nonlinear 

variation of the Schrodinger equation in mathematics. It is a 

classical theory field equation with applications to optics and 

water waves. Unlike the Schrodinger equation, it never 

describes the physical state of the time evolution which is 

called as quantum state. In quantum mechanics, the equation is 

a special case of the nonlinear Schrodinger field, and when 
canonically quantized, it describes point particles known as 

bosonic particles with delta-function interactions the particles 

either repel or attract when they are at the same point in the 

physical state. The nonlinear Schrodinger equation is 
integrable when the particles move in one dimension of space. 

In the limit of infinite strength repulsion, the nonlinear 

Schrodinger equation bosons are equivalent to one 

dimensional free fermions. One of the simplest method used 

for solving nonlinear Schrodinger equation is Split Step 

Fourier Method [6].  

The Nonlinear Schrodinger equation for A(z,t) in the 

presence of Group Velocity Dispersion and Self-Phase 

Modulation is given by 

                                                                                                         
𝜕𝐴

𝜕𝑧
+

𝑖𝛽2

2

𝜕2𝐴

𝜕𝑡2
= 𝑖𝛾|𝐴|2𝐴 −

𝛼

2
𝐴                        (4) 

 

 
where 

A   -  Amplitude 

z    -   propagating distance 

β2   -  GVD parameter 

γ    -   Nonlinear parameter 

α    -   Fiber loss 

      The above NLSE can be solved using many methods, but 

the most efficient method of solving NLSE is by Split Step 

Fourier Method which is explained below as follows. 

A. Split Step Fourier Method 

In numerical analysis, the Split-step Fourier method is a 

pseudo-spectral numerical method used to solve nonlinear 

partial differential equations like the nonlinear Schrodinger 

equation. The name comes into account for two reasons. First, 

the method does the computing of the solution in small steps, 

and treating the linear and the nonlinear steps separately. 

Second, it is necessary to Fourier transform again and again 

because the linear step is made in the frequency domain while 

the nonlinear step is made in the time domain. An example of 
usage of this method in optical fiber communication is in the 

field of light pulse propagation in optical fibers, where the 

interaction of linear and nonlinear mechanisms makes it 

difficult to find general analytical solutions. However, the 

split-step method provides a numerical solution to the problem 

[7]. 

Dispersion and nonlinear effects act simultaneously on 

propagating pulses during nonlinear pulse propagation in 

optical fibers. However, analytic solution cannot be employed 

to solve the NLSE with both dispersive and nonlinear terms 

present. Hence the numerical split step Fourier method is 
utilized, which breaks the entire length of the fiber into small 

step sizes of length “h” and then solves the nonlinear 

Schrodinger equation by splitting it into two halves, the linear 

part (dispersive part) and the nonlinear part over z to z + h. 

Each part is solved individually and then combined 

together afterwards to obtain the aggregate output of the 

traversed pulse. It solves the linear dispersive part first, in the 

Fourier domain using the fast Fourier transforms and then 

inverse Fourier transforms to the time domain where it solves 



International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) 

Volume 3 Issue 4, April 2014                                                          

 

 

ISSN: 2278 – 1323                                      All Rights Reserved © 2014 IJARCET                                                                     1499 

 

the equation for the nonlinear term before combining them. 

The process is repeated over the entire span of the fiber to 
approximate nonlinear pulse propagation[8]. 

In analyzing the NLSE we can rewrite the equation (4) in a 

different format as follows 

𝜕𝐴

𝜕𝑧
=  

𝑖𝛽2

2

𝜕2

𝜕𝑡2
+ 𝑖𝛾 𝐴 2 −

𝛼

2
 𝐴                 (5) 

 

B. Flow diagram for pulse compression 

The flow diagram of optical pulse compression is given 
below with the help of flow graphs. The below mentioned 

methodology is used in compressing the pulse to a reasonable 

extent which is as follows 
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Fig:1 Flow diagram of optical pulse compression 

 

IV. SIMULATIONS RESULTS 

The compression of initially chirped optical soliton pulses 

is discussed with the help of second order dispersion 

coefficient β20 and b ratio of frequency detune to coupling 

coefficient. In the first case for the minimum value of b, the 

optical pulse is more compressed. In the final case for 

maximum value of b the pulse is said to be least compressed 

or in other words distorted. For the effective compression the 

value of b should be in the range of 0.5 ≤ b ≤ 3.0 

 

A. Case 1 

For higher compression of optical pulse set the parameters 

are as follows: 

b=1.0, T0=10.586 ps, C= - 0.5, 

b- ratio of frequency detune to coupling coefficient 

T0- Pulse width, C- initial chirp 
 

 

Fig:2 Comparison of input pulse and compressed output pulse 

 From the Case 1 results we can see that the pulse is 

said to be compressed for minimum value of b which is an 

important design parameter of the proposed optical pulse 
compressor. In the output pulse form the width of the pulse is 

reduced when compared to the input pulse, similarly the 

amplitude or power level of the pulse is increased which tells 

us the above pulse is compressed. 

B. Case 2 

For compression of optical pulse set the parameters are as 
follows: 

b=2.0, T0=10.586 ps, C= - 0.5, 

b- ratio of frequency detune to coupling coefficient 

T0- Pulse width, C- initial chirp 

start 

Initialize the pulse width 

and chirp 
 

Introduce second order 

dispersion 
 

Vary the value of b for 
effective compression,  

0.5 ≤ b ≤ 5 

 

 If b ≤ 3 
 

 

Pulse gets compressed 

 

Find the figure of merit and 

other effects 
 

Find the FWHM for 

analyzing the compression 

of optical pulses 

 

Pulse gets distorted 

 

stop 
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Fig:3 Comparison of input pulse and compressed output pulse 

From the Case 2 results we can see that the pulse is said to 

be compressed for intermediate value of b which is an 

important design parameter of the proposed optical pulse 

compressor. In the output pulse form the width of the pulse is 

reduced when compared to the input pulse, similarly the 

amplitude or power level of the pulse is increased which tells 

us the above pulse is compressed but does not achieve higher 
compression. So as the value of b increases the compression of 

the pulse decreases. 

C. Case 3 

For compression of optical pulse set the parameters are as 

follows: 

b=4.0, T0=10.586 ps, C= - 0.5, 
b- ratio of frequency detune to coupling coefficient 

T0- Pulse width, C- initial chirp 

 
Fig:4 Comparison of input pulse and compressed output pulse 

 
From the Case 3 results we can see that the pulse is said to 

be uncompressed for almost maximum value of b. In the 

output pulse form the width of the pulse is not reduced when 

compared to the input pulse, similarly the amplitude or power 

level of the pulse is decreased which tells us the above pulse is 

not compressed. So as the value of b increases the 

compression of the pulse decreases. 

D. Effect of Figure of Merit 

The effect of figure of merit (M) plays an important role in 

determining the compression of the optical pulse[9]. The 

graph of figure of merit is shown below as follows: 

 
Fig 5: Figure of merit(M) vs Ratio of frequency detune to 

coupling coefficient (b) 

From the above graph we can see the figure of merit (M) 
linearly increases as b increases which tells us that 

compression is inversely proportional to the figure of merit 

(M). Obviously for optimum pulse compression, M should be 

as small as possible. We note that the value of M is 

proportional to |𝛽20 | and b, but is inversely proportional to the 

initial pulsewidth parameter T0. 

E. Tabulation Results of FWHM 

The compression of optical pulse can be found by 

comparing the width of the input pulse as well as the output 

pulse with the parameter called FWHM which measures the 

width of the pulse at its half maximum value. From the 

tabulation results we can able to find out whether the pulse is 

compressed or not. If the FWHM of the output pulse is lesser 

than the FWHM of the input pulse then it is said to be 

compressed, if it is not then it is said to be uncompressed or 

distorted. 

TABLE I. Compression of chirped pulse  

(b) vs FWHM (ps) 

S. No Chirp Value of b FWHM(ps) 

1 -0.5 0.5 1 

2 -0.5 1 4 

3 -0.5 1.5 7 

4 -0.5 2 13 

5 -0.5 2.5 19 

6 -0.5 3 25 

7 -0.5 3.5 31 

8 -0.5 4 35 

9 -0.5 4.5 37 

10 -0.5 5 41 

 

Note: FWHM of input pulse = 25 ps 
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V. CONCLUSION 

The optical pulse compression using FBGs with 

exponentially decreasing second-order dispersion allows 

nearly pedestal-free pulse compression in a short length, 

leading to a novel all-fiber compression device. The figure of 

merit , which is the ratio of the second-order dispersion length 

to third-order dispersion length, to measure the effect of 

higher order dispersions is important for the compression 

because it determines the maximum and minimum 

compression of the optical pulses. For optimum pulse 
compression, figure of merit should be as small as possible. 

For the PBG, we found that the ratio of frequency detune of 

the pulse’s center frequency from the Bragg frequency of the 

FBG to coupling coefficient of the FBG is an important design 

parameter for the proposed optical pulse compressor. These 

two parameters determines the compression as well as 

distortion of the pulse. FWHM is also used to figure out the 

compressed and distorted pulse using width of the optical 

pulse in the half maximum. 
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