
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 3 Issue 3, March 2014

ISSN: 2278 – 1323 All Rights Reserved © 2014 IJARCET 866

Abstract— Solving a problem mean looking for a solution,

which is best among others. Finding a solution to a problem in

Computer Science and Artificial Intelligence is often thought

as a process of search through the space of possible solutions.

On the other hand in Engineering and Mathematics it is

thought as a process of optimization i.e. to find a best solution

or an optimal solution for a problem. We categorize the

different AI search and optimization techniques in a tabular

form on the basis of their merits and demerits to make it easy to

choose a technique for a particular problem.

Index Terms—artificial intelligence, complexity,

optimization, searching

I. INTRODUCTION

 Search algorithms are used for a multitude of AI tasks, one

of them being the path finding. The area of search in AI is

very much connected to real life problem solving. AI has

investigated search methods that allow one to solve path

planning problems in large domains. Having formulated

problems, we need to solve them and it is done by searching

through the state space during this process. Most of the

researches on search methods have studied how to solve

one-shot path-planning problems. Search is mostly a

repetitive process, therefore, many AI systems re-plan from

scratch to solve the path planning problem independently.

Optimization is one of the most important tasks the engineers

have to carry out. The engineers are required to design new,

better, more efficient, less complex and less expensive

systems as well as to devise plans and procedures for the

improved operation of existing systems in both industrial and

the scientific world.

II. PROBLEM STATEMENT

There are many search and optimization algorithms in

Artificial Intelligence, the popular ones being Uninformed

Search, Heuristic Search and Evolutionary algorithms etc.

Although a lot of research work is done on individual

algorithm but not enough research is done on the comparison

of these algorithms under different problems. This is

 Ashwani Chandel, Department of Computer Science, Himachal Pradesh

University, Shimla, India

Manu Sood, Professor, Department of Computer Science, Himachal

Pradesh University, Shimla, India

essential considering the fact that these algorithms behave

differently or perform differently for different problems. By

analyzing how an algorithm performs under a certain

problem, the shortcomings of the algorithm can be found out

and more research could be done on removing those

shortcomings. Further, this research work also helps in

choosing an algorithm best suited to a particular problem by

finding out the pros and cons of the tested algorithm.

III. AI SOLUTION SEARCH TECHNIQUES & ALGORITHMS

Search problems can be classified by the amount of

information that is available to the search process. Such

information might relate to the problem space as a whole or

to only some states. It may be available a priori or only after a

node has been expanded. On such basis we can categorize

different search techniques as shown in Fig 1. [3].

Fig.1 Classification of Different Search Techniques [4]

Uninformed search algorithms for problem solving are a

central topic of classical computer science by Horowitz and

Sahni 1978, Operations research by Drefus by

1969.Uninformed search strategies use only that information

which is available in the problem definition. Followings are

important types of uniformed search strategies:-

A. Brute force or Blind search methods

Brute force or blind search is a uninformed exploration of

the search space and it does not explicitly take into account

either planning efficiency or execution efficiency. Blind

search is also called Brute Force Search. It is the search

Searching and Optimization Techniques in

Artificial Intelligence: A Comparative Study &

Complexity Analysis

Ashwani Chandel, Manu Sood

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 3 Issue 3, March 2014

ISSN: 2278 – 1323 All Rights Reserved © 2014 IJARCET 867

which has no information about its domain [3]. The only

thing that a blind search can do is to differentiate between a

non goal state and a goal state. These methods do not need

domain knowledge but they are less efficient in result. All

brute force search algorithms must take O(bd) time and use

O(d) space [4]. The most important brute force techniques

are breadth first, depth first, uniform cost, depth first

iterative deepening and bidirectional search. Uninformed

strategies don’t use any information about how close a node

might be to a goal. They differ in the order that the nodes are

expanded.

B. Breadth First Search (BFS)

Breadth first search is a general technique of traversing a

graph [4]. Breath first search may use more memory but will

always find the shortest path first [3]. In this search a queue

data structure is used and it is level by level traversal. Breadth

first search expands nodes in order of their distance from the

root. It is a path finding algorithm that is capable of always

finding the solution, if one exists [4]. The solution which is

found is always the optimal solution. This task is completed

in a very memory intensive manner. Each node in the search

tree is expanded in a breadth wise at each level. Thus all

expanded nodes are retained till the search is completed. It

can be implemented most easily by maintaining the queue of

nodes. The number of node at level d is (bd), the total number

of nodes produced in the worst case is b+b2+b3+……. + bd

which is O(bd) the asymptotic time complexity of breadth

first search. [2]. Breadth first search is a complete algorithm

with exponential time and space complexity.

Fig.2 Breadth First Search Technique for a Tree Structure [5]

C. Depth First Search (DFS)

Depth first search is also important type of uniform or

blind search. DFS visits all the vertices in the graph, this type

of algorithm always chooses to go deeper into the graph [5].

After DFS visited all the reachable vertices from a particular

source vertex it chooses one of the remaining undiscovered

vertices and continues the search. DFS reminds the space

limitation of breadth first search by always generating next a

child of the deepest unexpanded nodded One interesting

property of depth first search is that, the discover and finish

time of each vertex form a parenthesis structure. If we use

one open parenthesis when a vertex is finished then the result

is properly nested set of parenthesis [6].

Fig.3 Depth First Search Technique for a Tree Structure [6]

The disadvantage of depth first search is that, it may not

terminate on an infinite tree, but simply go down the left

most paths forever. Even a finite graph can generate an

infinite tree [4].

D. DFS Iterative Deepening

This kind of search performs depth first search to bounded

depth d, starting d=1, and on each iteration it increases by 1

[2]. Depth First Iterative Deepening (DFID) is

asymptotically optimal in terms of time and space among all

brute force search algorithms that finds optimal solution on a

tree. It was created as an attempt to combine the ability of

BFS to always find an optimal solution. With the lower

memory overhead of the DFS, we can say it combines the best

features of breadth first and depth first search [5]. It performs

the DFS search to depth one, then starts over, executing a

complete DFS to depth two, and continues to run depth first

searches to successfully greater depths until a solution is

found. This algorithm is equivalent to common backtracking

algorithm in that a path is expanded until a solution is found.

DFID does better because other nodes at depth d are not

expanded [5]. It never generates a node until all shallower

nodes have been generated. The first solution found by DFID

is quite guaranteed to be along the shortest path and depth is

increased one by one. Its main function is that it returns a

solution or failure. This search is faster than BFS because

latter also generates nodes at depth d+1 even if the solution is

at depth d. It is liked often because it is effective compromise

between two other methods of search [4]. It terminates if

there is a solution. It can produce the same solution as

produced by depth first search produces but it does not use the

same memory. Its main properties are that it is memory

efficient and always find best solution if one exists.

E. Greedy Search

This algorithm uses an approach which is quite similar to

the best first search algorithm. It is a simple best first search

which reduces the estimated cost to reach the goal. Basically

it takes the closest node the goal state and continues its

searching from there. It expands the node that appears to be

closest to the goal [3]. This search starts with the initial

vertex and makes very single possible change then looks at

the change it made to the score. This search then applies the

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 3 Issue 3, March 2014

ISSN: 2278 – 1323 All Rights Reserved © 2014 IJARCET 868

change till the greatest improvement. The search continues

until no further improvement can be made. The Greedy

Search never makes a lateral or uphill move. It uses minimal

estimated cost h(n) to the goal state as measure which

decreases the search time but the algorithm is neither

complete nor optimal. The main advantage of this search is

that it is simple and finds solution quickly and as far as its

disadvantages are concerned it is not optimal, susceptible to

false start and the time complexity O(bm) is same for space

complexity [3].

F. Bidirectional Search

The idea behind bidirectional search is to run two searches

same time, one forward from the initial state and other

backward from the goal state, stopping when the two

searches meet in the middle [4]. Bidirectional search is

implemented by having one or both of the searches check

each node before it is expanded to see if it is in the fringe of

other search tree, if it is so, a solution has been found. For

example if a problem has solution depth d=6, and each

direction runs breadth-first search one node at a time then in

the worst case the two searches meet when each has

expanded all but one of the nodes at depth 3. For b=10, it

means a total of 22,200 node generation, compared with

11,111,100 for a standard breadth-first search. This

algorithm is complete and optimal, if both searches are

breadth first, other combinations may sacrifice completeness,

optimally or both [4]. The most difficult case for bidirectional

search is when the goal test gives only an implicit description

of some possibly large set of goal states.

Fig.4 Bidirectional Search [5]

Other than Uninformed search techniques, Heuristic is a

problem specific knowledge that decreases expected search

efforts. It is a technique which works sometimes but not

always. Heuristic search algorithms use information about

the problem to help directing the path through the search

space. These searches use some functions that estimate the

cost from the current state to the goal presuming that such

function is efficient. Generally heuristic incorporates domain

knowledge to improve efficiency over blind search [6]. In AI

heuristic has a general meaning and also a more specialized

technical meaning. Generally a term heuristic is used for any

advice that is effective but is not guaranteed to work in every

case [5].

G. A* Search

A* is a cornerstone name of many AI systems and has been

used since it was developed in 1968[1] by Peter Hart, Nils

Nilsson and Betram Rapahel. It is combination of Dijkstra’s

algorithm and best first search. It can be used to solve many

kinds of problems. A* search finds the shortest path through

a search space to goal state using heuristic function. This

technique finds minimal cost solutions and is also directed to

a goal state called A* search. The A* algorithm also finds the

lowest cost path between the start and goal state, where

changing from one state to another requires some cost.

A*requires a heuristic function to evaluate the cost path that

passes through the particular state [2]. It is very good search

method but with complexity problems. This algorithm is

complete if the branching factor is finite and every action has

fixed cost. A* requires heuristic function to evaluate the cost

of path that passes through the particular state. It is defined

by the following formula:-

f(n)= g(n)+h(n) [2]

Where g(n) is the cost of the path from the start state to node

n and h(n) is the cost of path from node n to the goal state.

The speed of execution of A* search is highly dependent on

the accuracy of the heuristic algorithm that is used to

compute h(n). A* search is both complete and optimal. Thus

if we are trying to find the cheapest solution a reasonable

thing to try first is the node with the lowest value of

g(n)+h(n). It turns out that this strategy is more than just

reasonable which provides that the heuristic function h(n).

H. Hill Climbing Search

Hill climbing search algorithm is simply a loop that

continuously moves in the direction of increasing value,

which is uphill. It stops when it reaches a ―peak‖ where no

neighbour has a higher value. The hill climbing comes from

that idea that if you trying to find the top of the hill and you

go up direction from where ever you are. The question that

remains is whether this hill is indeed the highest hill

possible. Unfortunately, without further extensive

exploration, that question cannot be answered [7]. This

technique works but as it uses local information so it can be

fooled. The algorithm does not maintain a search tree, so the

current node data structure need only record the state and its

objective function value.

In this algorithm only a local state is considered when

making a decision of which node is to expand next? When a

node is entered all of its successor nodes have a heuristic

function applied to them. The successor node with the most

desirable result is chosen for traversal. Hill climbing

sometimes called greedy local search because it catches a

good neighbour state without thinking ahead about where to

go next. Hill climbing often makes very rapid progress

towards a solution because it is usually quite easy to improve

a bad state. Hill climbing is best suited to the problems,

where the heuristic gradually improve the closer it gets to the

solution. It works badly, where there are sharp drop-offs. It

assumes that local improvement will lead to global

improvement. There are some reasons by which hill climbing

often gets stuck which are stated below.

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 3 Issue 3, March 2014

ISSN: 2278 – 1323 All Rights Reserved © 2014 IJARCET 869

Fig.5 Hill climbing search [8]

Local Maxima: A local maximum is the peak that is higher

than each of its neighbouring states, but lower than the global

maximum. Hill climbing algorithms that reach the vicinity of

local maximum will be drawn upwards towards the peak, but

then will be stuck with nowhere else to go [4].

Ridges: Steps of East, North, South and West may go down

but the step to North West may go up. Ridges result in a

sequence of local maxima that is very difficult for greedy

algorithm to navigate [4].

Plateaus: The space has a broad flat area that gives the search

algorithm no direction (random walk).

Many variants of hill climbing have also been invented

which are described below [4]:

Stochastic Hill climbing: This variant chooses at random

from among the uphill moves and the probability of selection

can vary with the steepness of the uphill move. This usually

converges more slowly than steepest ascent but in some state

landscapes it finds better solution.

 First choice Hill climbing : First choice Hill climbing

variant implements stochastic hill climbing by generating

successors randomly until one is generated that is better than

current state. This is a good strategy when a state has

thousands of successors.

Random Restart Hill Climbing: This Variant adopts the well

known adage, if at first you don’t succeed try again and

again. It conducts a series of hill climbing searches from

randomly generated initial states, stopping when a goal is

found.

I. Simulated Annealing

In the early 1980's, Kirkpatrick, Gelatt & Vecchi (1982,

1983) and independently Cerny,

In 1985 introduced the concept of the physical annealing

process in combinatorial optimization problem. The reason

originates from the analogy between the solid annealing

process and the problem of solving large scale combinatorial

optimization problem [7]. Simulated annealing exploits an

analogy between the way in which metal cools and freezes

into a minimum energy, crystalline structure and the search

for a minimum in a more general system. Simulated

annealing is a probabilistic search algorithm and can avoid

becoming trapped at local minima. Simulated annealing uses

a control parameter T, which by analogy with the original

application is known as the system temperature. It escapes

local maxima by allowing some bad moves but gradually

decrease their frequency.

Properties

If T decreases slowly enough, then simulated annealing

search will find a local optimum with probability

approaching. It is also widely used in VLSI layout, airline

scheduling etc.

J. Generate and Test search

This is the simplified form which contains the following

steps:

 It generates a possible solution

 Compares the possible solution to the goal state.

 If the solution is found it returns the success

otherwise it again goes to first stage.

These are brute force algorithms that simply generate a

possible solution and test to see if it is

Correct, if the solution is not correct then they repeat.

Advantages:- The main benefit of this algorithm is that it is

easy to implement but its time complexity is higher than

other search algorithms [7]. It takes very long time before the

solution is found. This algorithm is improved to hill climbing

algorithm. In such algorithms heuristic function is used to

estimate the distance from the goal state. Thus only that

solution is generated that will minimize the distance.

Disadvantages:- Generate and test approach is not very

efficient because it also generates many wrong assignments

of values of variables which are rejected in the testing phase.

Furthermore the generator leaves out the conflicting

instantiations and it generates other assignments

independently of the conflict. Visibly one can get far better

efficiency if the validity of the constraint is tested as soon as

its respective variables are instantiated [7].

K. Back Tracking (BT)

A variant of Depth First Search is called Back Tracking

search, which uses still less memory. In this search only one

successor is generated at a time rather than all successors.

Each partially expanded node remembers which successor to

generate next. In this way only O(m) memory is needed

rather than O(bm). It is the most common algorithm for

solving constraint satisfaction problem (CSP).

There is a major disadvantage of the standard

backtracking scheme which is Thrashing. It occurs because

the standard BT algorithm does not identify the main reason

of the conflict or problem i.e. conflicting variables. That is

why search in different parts of the space keeps failing for the

same reason. Intelligent back tracking can reduce or finish

thrashing. It is done by the scheme on which backtracking is

done directly to the variable that cause the failure [8].

L. Best First Search

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 3 Issue 3, March 2014

ISSN: 2278 – 1323 All Rights Reserved © 2014 IJARCET 870

Best first search is an instance of the general tree or graph

search algorithms in which a node is selected for expansion

based on evaluation function f (n) [8]. Traditionally the node

with the lowest evaluation is selected for the expansion

because the evaluation measures distance to the goal. Best

first search can be implemented with in general search

framework via a priority queue, a data structure that will

maintain the fringe in ascending order of f values. This

search algorithm serves as combination of Depth First Search

and Breadth First Search algorithms. BFS algorithm is often

referred to as greedy algorithm because this algorithm

quickly attacks the most, desirable path as soon as its

heuristic weight becomes the most desirable [3]. There is a

whole family of BFS algorithms with different evaluation

functions. A key component of these algorithms is a heuristic

function denoted h (n):

h(n) = estimated cost of the cheapest path from node n to a

goal node [8].

The main steps of this search algorithm are: first add the

initial node (starting point) to the queue and secondly it

compares the front node to the goal state, if they match then

the solution is found. If they don’t match then expand the

front node by adding all the nodes from the links. If all the

nodes in the queue are expanded then the goal state is not

found i.e. there is no solution and it stops. Apply the heuristic

function to evaluate and reorder the nodes in the queue [9].

M. Branch and Bound

The branch and bound method was first used for

parsimony by Hendy and Penny [8]. In 1975 La Blanc

presented a branch and bound algorithm solution

methodology for the discrete equilibrium transportation

network design problem [9]. These search methods basically

rely on that idea that we can divide our choice into sets using

same domain knowledge and ignore a set when we can

determine that the optimal element can’t be in it. In 1991

Chen proposed a branch and bound with a stochastic

incremental traffic assignment approach for the single class

network design problem. It is an algorithmic technique

which finds the optimal solution by keeping the best solution

found so far. If partial solution can’t be improved to its best,

it is abandoned. By this method the number of nodes which

are explored can also be reduced. It also deals with the

optimization problems over a search that can be presented as

the leaves of search tree. The usual technique for eliminating

the sub trees from the search tree is called pruning. The load

balancing aspects for branch and bound algorithms make it

parallelization difficult. The primary difficulty being that

usual assumption requires no priori information about the

likely location of the search target.

N. Means End Analysis

Mean End Analysis is also an important kind of search

algorithm and it is used in AI applications when a complex

search is needed to be done. It is a different approach to find

the solution and they are a common form of heuristic

algorithm. Early implementations included the general

problem solver (GPS). Now a day Means-End analysis is still

used to create effective searches in the field of distributed

computed Artificial Intelligence. It also focuses the search on

actions which decrease the distance between current and

target.

There are three main kind of goals used in mean end analysis

search algorithm which are

1- Transform a state into a set of states

2- Decrease a distance possessed by a state

3-Apply an operator to the state to reduce the difference.

Fig.6 Means End Analysis States [9]

IV. COMPARISON OF DIFFERENT SEARCH ALGORITHMS

The output of problem solving algorithm is either failure

or solution. Some algorithms might get stuck in an infinite

loop and never return an output. When determining which

search algorithm is appropriate for a problem space, it is

necessary to derive and compare general attributes of each

algorithm [3] .We will evaluate algorithm’s performance in

four ways

A. Completeness: - Is that algorithm guaranteed to find

a solution when there is one? This column is a

Boolean indicator of whether or not the search

algorithm is exhaustive.

B. Optimality: - Does that strategy find the optimal

solution? This column indicates that whether or not

the solution found will always be the optimal

solution.

C. Time Complexity: - How long does it take to find a

solution? It is the order of complexity search time

used by algorithm expressed as a function.

D. Space Complexity: - How much memory is needed to

perform the search? This column is the order of

complexity memory requirements of algorithm

also expressed as a function.

The comparison among different search algorithms by these

factors is shown by the table 1:

TABLE 1: Comparison of different search algorithms

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 3 Issue 3, March 2014

ISSN: 2278 – 1323 All Rights Reserved © 2014 IJARCET 871

 Where

 d =depth of solution with in search tree

 b = branching factor of search tree

 n =subset of b for which algorithm will actually process.

In table 1, the attributes create a basis for decision making.

Each of the algorithms discussed contains weak and strong

attributes.

V. CONCLUSION

It is the function of the problem space to weight the trade-offs

between the algorithms and determines which algorithm

provides the best solution [9]. It can be seen from the table

that the time estimate from all the searches are similar. The

three exceptions are the Bidirectional, Beam and Generate

and Test searches. The main reason that the Bidirectional

search has a lesser time estimate is because it is

simultaneously working from both ends of the problem

looking for a common intermediate node. The Beam search

has a time estimate of O(nd) as opposed to the more common

O(bd). It is because the Beam Search is modified A* Search

that examines on the best n branches at any node. It speeds up

processing, but at the cost of assuming that a suboptimal

node will never need to be travelled to reach the goal state. If

that is the case the solution to the search will never be found.

The memory requirement of the search algorithms are more

distributed than the time estimates. In many cases a search

algorithm will approach a problem Breadth First or Depth

First.

REFERENCES

[1]: R. Saunders, ―Lecture Notes on Introduction to

Artificial Intelligence for Games‖,2006,

http://www.soi.city.ac.uk/ ~rob/Lecture09-8up.pdf.

[2]: S.J. Kelly, ―Article on Applying Artificial Intelligence

Search Algorithms and Neural Networks for Games‖,

http://www.generation5.org/content/2003/KellyMiniPa

per.asp, 2003.

[3]: D.W. Patterson, ― Introduction to Artificial Intelligence

and Expert Systems‖, PHI Learning Private Limited,

2009.

[4]: S. Russel and P.Norvig,‖ Artificial Intelligence a

Modern Approach, A book on Artificial Intelligence

and Algorithms‖, 2006.

[5]: R.E. Korf,‖ Scientific Paper on Artificial Intelligence

Search Algorithms‖, University of California Los

Angeles, June 1999.

[6]: P.O. Doyle,‖ Definition on AI Search Algorithms and

Techniques‖,

http://www.cs.dartmouth.edu/7Ebrd/Teaching/AI/

Lectures/Summaries/Search.html, May 2006.

[7]: A. Hertz,‖ Lecture Notes on AI and Search

Algorithms‖,http://www.csalbpc3.massey.ac.nz/notes/

59302/103.html, May 2006.

[8]: J. Betali,‖ Lecture Notes on Cognitive Science and

Search Algorithms, University of California Sandiago,

Nov 16, 1999.

[9]: T.A. Assaleh,‖ Article on Intelligent Search Algorithm‖,

http://www.cosc.brocku.ca/~cspress/Helloworld/1999/0

2-feb/search_algorithms.html, Brooke University

Canada, 1999.

Dr. Manu Sood is a Professor in the

Department of Computer Science,

Himachal Pradesh University Shimla. He

holds a Bachelor's degree in engineering,

M.Tech. (with a gold medal) and has done

his PhD from Delhi University. He has been

working in the Department of Computer

Science, HPU, since 1993.He has a keen Research interest in

the field of Software Engineering and related fields.

Er. Ashwani Chandel is a M.Tech student in

the Department of Computer Science,

Himachal Pradesh University, Shimla. He

holds his B.Tech. in IT from the University Institute of

Information Technology, HPU Shimla. His research area of

interest is Artificial Intelligence.

http://www.soi.city.ac.uk/
http://www.generation5.org/content/2003/KellyMiniPaper.asp
http://www.generation5.org/content/2003/KellyMiniPaper.asp

