
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 3, Issue 2, February 2014

ISSN: 2278 – 1323 All Rights Reserved © 2014 IJARCET 276

An Efficient Mining Model For Enhancing

Text Classification Using k-NN

T.SIVAKUMAR
Assistant Professor

Department of Computer Science and Engineering

Maharaja Institute of Technology
Coimbatore

A.KALEESWARAN
Assistant Professor

Department of Computer Science and Engineering

Park College of Engineering and
Tekhnology, Coimbatore

Abstract - Text classification is a supervised technique that

uses labeled training data to learn the classification system

and then automatically classifies the remaining text using the

learned system. Classification plays a vital role in many

information management and retrieval tasks. Classification

includes different parts such as text processing, feature

extraction, feature vector construction and final classification.

In this project, apply machine learning methods for

classification. In this regard, first try to exert some text pre-

process in different dataset, and then extract a feature vector

for each new document by using feature weighting and

feature selection algorithms for enhancing the text

classification accuracy. After that train our classifier by Naïve

Bayesian (NB) and K-nearest neighbor (KNN) algorithms. In

experiments, both algorithms show acceptable results for text

classification.

Index Terms—Text processing, classification, vector

construction, Naïve Bayesian, K-nearest neighbor.

I.INTRODUCTION

Text Classification or Categorization, the problem of

automatically assigning semantic categories to natural

language text, has become one of the most important

methods for organizing textual information. Since the

classification by hand is costly and in most cases highly

unpractical due to the increasing number of documents and

categories in many corpora, most state of the art

approaches employ machine learning techniques to

automatically learn text classifiers from training examples.

Unlike many other classification tasks, text classification

involves also preprocessing steps, eg, stemming and

dimensionality reduction, which have an important

influence on the effectiveness of the actual classification

outcome.

Categorizing text documents means to discover their

category or topic from a set of predefined categories, eg.

`sports' or `economics'. Text categorization is an important

field within natural language processing. Its application

areas are many and the need for them is increasingly

important as the amounts of information continue to grow.

Junk mail filtering has been an important area for text

categorization the last decade, as have portals with

hierarchies of web sites, digital libraries and more. But the

general task of placing a text document in the correct

location or spotting its correct topic will exist as long as

digital written texts are being produced. Other examples

include publishing newspaper articles in the correct

category or storing a digital document correctly in an

archive or library. Automatic text categorization was first

done as early as the sixties, though the lack of computer

power made it infeasible for a long time. During the last

decade or so however, we have seen a lot of efforts in the

area. While computers today are capable of learning and

performing text categorization within reasonable time

limits, growing amounts of data makes TC challenging

today as well. When classifying text documents one

considers the features of a document, typically these

correspond to terms. Not all features are equally helpful for

deciding which category a document belongs to. One can

say that they convey less information, while some features

may even be regarded as noise. Selecting a good subset of

these features has emerged as a research field itself, named

feature selection. Selecting a subset of features can give

both huge savings in computation time and increase in

accuracy. Many methods for ranking and selecting features

have been presented, and the main task of this assignment

is to compare promising methods in the same system.

Feature selection methods have been compared before, but

the number of methods compared in each paper is often

sparse. Also, several methods have been presented and

there is a so far unfulfilled need to compare these against

each other and the classic methods.

Text categorization (also known as text classification) is,

quite simply, the automated assignment of natural language

texts to predefined categories based on their content. Its

applications include indexing texts to support document

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 3, Issue 2, February 2014

ISSN: 2278 – 1323 All Rights Reserved © 2014 IJARCET 277

retrieval, extracting data from texts, and aiding humans in

these tasks. The performance of standard text

categorization techniques on standard test corpora has been

quite encouraging. For example, reported an 87.8%

precision/recall breakeven point for the Reuters-21578

corpus.

Nearest Neighbor Analysis is a method for classifying

cases based on their similarity to other cases. In machine

learning, it was developed as a way to recognize patterns

of data without requiring an exact match to any stored

patterns, or cases. Similar cases are near each other and

dissimilar cases are distant from each other. Thus, the

distance between two cases is a measure of their

dissimilarity. Cases that are near each other are said to be

“neighbors.” When a new case (holdout) is presented, its

distance from each of the cases in the model is computed.

The classifications of the most similar cases – the nearest

neighbors – are tallied and the new case is placed into the

category that contains the greatest number of nearest

neighbors. specify the number of nearest neighbors to

examine; this value is called k. The pictures show how a

new case would be classified using two different values of

k. When k = 5, the new case is placed in category 1

because a majority of the nearest neighbors belong to

category 1. However, when k = 9, the new case is placed in

category 0 because a majority of the nearest neighbors

belong to category 0.

Nearest neighbor analysis can also be used to compute

values for a continuous target. In this situation, the average

or median target value of the nearest neighbors is used to

obtain the predicted value for the new case.

 There are some noise reduction

techniques that work only for k-NN that can be

effective in improving the accuracy of the

classifier.

 In situations where an explanation of the

output of the classifier is useful, k-NN can be very

effective if an analysis of the neighbors is useful

as explanation.

 The Naive Bayes algorithm affords fast,

highly scalable model building and scoring. It

scales linearly with the number of predictors and

rows. The build process for Naive Bayes is

parallelized. (Scoring can be parallelized

irrespective of the algorithm.

 Naive Bayes can be used for both binary

and multiclass classification problems.

II. PROBLEM DEFINITION

The short version of the assignment text reads:

Information retrieval and text mining methods operate on

the terms found in text documents. As such, every term

found in a collection is analyzed and used for further

processing. The process of feature selection is performed

in order to reduce the number of terms to be used in further

analysis i.e. to identify the most important terms

beforehand. The task of this project is to compare a range

of feature selection techniques with the goal of a thorough

performance evaluation. The main goal of the assignment

is evidently to compare several feature selection

techniques.

The main purpose of the program is to provide a

framework to which more classifiers (eg. neural network

classification, other statistical methods, case- and rule-

based systems) can easily be added, and to give the user

the opportunity to compare and evaluate different

preprocessing techniques like stemming, term weighting,

and dimensionality reduction. In research areas where

quality is determined almost entirely based on empirical

results, the standardization of every step from

preprocessing to classification is essential. Furthermore,

can aid the exploration and analysis of corpora using

term/document/category tables and graphical tools.

III. PROBLEM SOLVING

1.Load data set

The development used a small self-made corpus since

the running time needed to be as short as possible. I

collected articles online from the New York Times,

Washington Post and CNN.com out of the standard

categories, “Science”, “Business”, “Sports”, “Health”,

“Education”, “Travel”, and “Movies”. This includes easy

(e.g. Sports $ Business) and more difficult (Education $

Science $ Health) classification tasks. I collected 150

documents with the following categories: Sports {30

Training Documents}, Health {30}, Science {27},

Business {23}, Education {24}, Travel {6}, Movies {10},

with in average 702 words per document.

The Reuters 21578 corpus

The second corpus already included in the system is the

frequently used Reuters 21578 corpus. The corpus is freely

available on the internet uses an XML parser, it was

necessary to convert the 22 SGML documents to XML,

using the freely available tool SX. After the conversion I

deleted some single characters which were rejected by the

validating XML parser as they had decimal values below

30. This does not affect the results since the characters

would have been considered as whitespaces anyway.

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 3, Issue 2, February 2014

ISSN: 2278 – 1323 All Rights Reserved © 2014 IJARCET 278

2.Text preprocessing

In most of the applications, it is practical to remove

words which appear too often in every or almost every

document and thus support no information for the task.

Good examples for this kind of words are prepositions,

articles and verbs like “be” and “go”. If the box “Apply

stop word removal” is checked, all the words in the file

“swl.txt” are considered as stop words and will not be

loaded. This file contains currently the 100 most used

words in the English language which on average account

for a half of all reading in English. If the box “Apply stop

word removal” is unchecked, the stop word removal

algorithm will be disabled when the corpus is loaded.

Stemming

Stemming or lemmatization is a technique for the

reduction of words into their root. Many words in the

English language can be reduced to their base form or stem

e.g. agreed, agreeing, disagree, agreement and

disagreement belong to agree. Furthermore are names

transformed into the stem by removing the “ s”. The

variation “Peter’s” in a sentence is reduced to “Peter”

during the stemming process. The result of the removal

may lead to an incorrect root. However, these stems do not

have to be a problem for the stemming process, if these

words are not used for human interaction. The stem is still

useful, because all other inflections of the root are

transformed into the same stem. Case sensitive systems

could have problems when making a comparison between

a word in capital letters and another with the same meaning

in lower case. Following a selection of suffixes and

prefixes for removal during stemming

 suffixes: ly, ness, ion, ize, ant, ent , ic, al

, ical, able, ance, ary, ate, ce, y, dom , ed, ee, eer,

ence, ency, ery, ess, ful, hood, ible, icity, ify, ing,

ish, ism, ist, istic, ity, ive, less, let, like, ment, ory,

ty, ship, some, ure

 prefixes: anti, bi, co, contra, counter, de,

di, dis, en, extra, in, inter, intra, micro, mid, mini,

multi, non, over, para, poly, post, pre, pro, re,

semi, sub, super, supra, sur, trans, tri, ultra, un.

However, most stemming algorithms do not remove the

prefix of a term. The reason of this is the huge impact for

the meaning of a sentence. For instance, stemming the

word nonhazardous to hazardous is a parlous change.

There are different types of stemming methods. The

simplest one is the brute force method. This method

requires a dictionary which contains the inflections of a

word. The dictionary is used as a lookup table. This

approach has some serious disadvantages. Firstly the speed

for the word ascription is very low and the whole

stemming process requires many resources in storage. This

is the result of a missing algorithm which could increase

the transformation speed. The other aggravating

disadvantage is the problem that the look-up table usually

does not contain all inflections for each root. The need for

a comprehensive dictionary is fundamental for acceptable

results. The quality of the result is directly derived from it.

Nevertheless, brute force solutions are used for languages

with a higher grammatical complexity. The English

language has quite simple inflections which can be easily

stemmed via an algorithm. However, languages such as

Romanic languages (French, Spanish, Italian, Portuguese,

etc.) have inflections with a change of the root of a word.

Pre- and suffix removing algorithms do not have the

capability to handle this kind of stemming problem. The

solution is often a stemming process which uses a suffix

stripping algorithm combined with one or more

dictionaries. This combination reduces the disadvantages

which each would cause if used separate.

The outcome of the stemming process always requires

the right balance. Neither too much nor too less stemming

is a benefit for Information Retrieval (IR). A small set of

terms will lead to less accurate relations between

documents with many connections. In contrast to this a

large set of terms will enable very accurate relations

between documents, but only few connections.

Porter stemming algorithmThe idea of this algorithm is

the removal of all pre- and suffixes to get the root of a

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 3, Issue 2, February 2014

ISSN: 2278 – 1323 All Rights Reserved © 2014 IJARCET 279

word. The main field of application for the Porter Stemmer

is languages with simple inflections, such as English. The

algorithm is favored and often used because of the

simplicity and the small amount of rules.Following an

explanation of the algorithm, based on the publication of

Martin F. Porter. The algorithm makes a distinction

between consonants and vowels in a word. Therefore the

selection of the applying rules during the stemming process

is based on the sequence of consonants and vowels.

A word is represented by the form

[C]VCVC ... [V]

Where the notation of a sequence of VC is written as

(VC) {m}, with VC repeated m times. An example for a

repetition with m = 0 is sea, for m = 1 is cat, for m = 2 is

garden and so on.

The further processing of the suffix stripping is decided

by several conditions. One of the conditions was

mentioned in the sentences before, the repletion of VC in a

word.

The other conditions for the Porter Stemming are:

 *S - the stem ends with S (and similarly

for the other letters).

 *v* - the stem contains a vowel.

 *d - the stem ends with a double

consonant (e.g. -TT, -SS).

 *o - the stem ends cvc, where the second

c is not W, X or Y (e.g. -WIL, -HOP).

Furthermore, combinations of these conditions are

possible (using and, or and not). Following, the rules with

some examples, divided into 5 steps. Only the application

of one rule for a step is allowed. This rule has to remove

the longest matching suffix.

Lancaster stemming : Stemming is a well-known

technique for information retrieval. The use of stems for

searching has the advantage of increasing recall by

retrieving terms that have the same roots but different

endings. A major disadvantage of stemming is a decrease

of precision as compared to the use of truncated terms.

When searching with stems, it is not uncommon to retrieve

many irrelevant terms that have similar roots but which are

not related to the object of the search. For accurate

retrieval, the search stems should be as long as necessary

to achieve precision, but short enough to increase recall.

Several commonly-used stemming programs and

algorithms were evaluated to try to select a stemmer

suitable for information retrieval of large databases. The

evaluation was narrowed down to two stemmers: 1) the

Paice/Husk stemmer developed at Lancaster University

which features a rule execution mechanism and externally

stored rules, and 2) the Porter stemmer which uses

algorithmic rules rather than externally stored rules.

Neither of these stemmers could be used in their original

form because some of the stems generated were not

substrings of actual words or the resulting stems were too

short. Both of these are important requirements for

accurately searching existing large databases.

The flexibility of being able to specify a new set of rules

without extensive programming changes made the

Paice/Husk stemmer more attractive than the Porter

stemmer. The Paice/Husk stemmer is basically a rewrite

rule interpreter which may be configured as a finite state

automaton by using the appropriate rules. The C-language

implementation by Andrew Stark of the Paice/Husk

stemmer works adequately, but is not well suited for

developing and experimenting with a new set of rules.

Consequently, the program was modified to improve the

handling of errors in the rules, allow interactive testing,

provide more precise stems, and add some flexibility for

implementing finite state automata. Fewer than 50 lines of

code were added or altered without counting the

replacement of the driver. The new driver and debugging

options make it possible to test the execution of the rules

interactively. This is important because it is possible for

the execution of the rules to get in an infinite loop! For

example, the rule "e,e,continue" will loop forever when a

word ending in "e" is input. The interaction of several rules

may also result in infinite loops when they all use the

continue flag. The code was modified to prevent infinite

loops by stopping when the number of rules executed

exceeds twice the number of characters in the input word.

The new debugging options helped to solve the mystery of

why the original rules generated the stem "abud" from

"abusively":

<abusively> 100->abusive 13->abusiv 94->abuj 27-

>abud

Affix removal conflation techniques are referred to as

stemming algorithms and can be implemented in a variety

of different methods. All remove suffices and/or prefixes

in an attempt to reduce a word to its stem.. The algorithms

that are discussed in the following sections, and those that

will be implemented in this project, are all suffix removal

stemmers.During the development of a stemmer the issues

of iteration and context awareness must be addressed.

Suffices that are concatenated to words are often done so in

a certain order, such that a set of order-classes will exist

among suffices. An iterative stemming algorithm will

remove suffices one at a time, starting at the end of the

word and working towards the beginning. An issue also

exists about whether a stemmer should be context-free or

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 3, Issue 2, February 2014

ISSN: 2278 – 1323 All Rights Reserved © 2014 IJARCET 280

context-sensitive. A context-sensitive algorithm involves a

number of qualitative contextual restrictions that are

developed to prevent the removal of endings that, in certain

situations, can lead to erroneous stems being produced. A

context free algorithm removes endings with no

restrictions placed on the circumstances of the removal.

3.Feature weighting and reduction

Odds Ratio compares the odds of a feature occurring in

one category with the odds for it occurring in another

category. It gives a positive score to features that occur

more often in one category than in the other, and a negative

score if it occurs more in the other. A score of zero means

the odds for a feature to occur in one category is exactly

the same as the odds for it to occur in the other, since in (1)

= 0.

The original Odds Ratio algorithm for binary

categorization:

 Let P(t|c) be the probability of a randomly chosen

word being t, given that the document it was chosen from

belongs to a class c. Then odds(t|c) is defined as P(t|c)/[1–

P(t|c)] and the Odds Ratio equals to

OR(t) = ln[odds(t|c+)/odds(t|c–)].

Obviously, this scoring measure favors features that are

representative of positive examples. As a result a feature

that occurs very few times in positive documents but never

in negative documents will get a relatively high score.

Thus, many features that are rare among the positive

documents will be ranked at the top of the feature list.

Odds Ratio is known to work well with the Naïve Bayes

learning algorithm.

Information gain

Here both class membership and the presence/absence of

a particular term are seen as random variables, and one

computes how much information about the class

membership is gained by knowing the presence/absence

statistics as is used in decision tree induction. Indeed, if the

class membership is interpreted as a random variable C

with two values, positive and negative, and a word is

likewise seen as a random variable T with two values,

present and absent, then using the information-theoretic

definition of mutual information we may define

Information Gain as:

IG(t) = H(C) – H(C|T) = Στ,c P(C=c,T=τ)

ln[P(C=c,T=τ)/P(C=c)P(T=τ)].

Here, τ ranges over {present, absent} and c ranges over

{c+, c–}. As pointed out above, this is the amount of

information about C (the class label) gained by knowing T

(the presence or absence of a given word).

Document frequency (df) thresholding

One of the simplest methods of vocabulary reduction,

and hence vector dimensionality reduction, is the

Document Frequency Thresholding,

DF(F) = NF

The number of documents containing a feature in the

training set is counted. This is done for every feature in the

training set, before removing all features with a document

frequency less than some specified threshold and features

with a frequency higher than some other threshold.

Alternatively, the document frequency can be used as any

other feature selection method where it creates a ranked

list, and returns the highest ranked features.

The document frequency values for our e-mail example

can be read directly from Table 4.1. Ranks the e-mail

example features according to their document frequency

value. Note that document frequency values are naturally

global, so there is no need to aggregate them in any way.

Table 4.1 Document Frequency

Term frequency document frequency (tfdf)

A method based on the term frequency combined with

the document frequency threshold is presented. They call it

Term Frequency Document Frequency, and prove it better

than DF thresholding.

where c is a constant c >=1, n1 is the number of

documents without the feature, n2 is the number of

documents where the feature occurs exactly once, n3 is the

number of documents where the feature occurs twice or

more.Use c = 10 in their experiments, and we follow this

decision in our experiments. It should be noted however,

that the constant can highly affect the results. Hence, in an

operational setting, performance should be measured for

Feature Document

Frequency Value

wigra 5.0

save 3.0

erection 3.0

ski 3.0

Cell 2.0

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 3, Issue 2, February 2014

ISSN: 2278 – 1323 All Rights Reserved © 2014 IJARCET 281

several levels of the constant, with the actual text

collection and classification learner at hand, as to achieve

the most from this feature selection method.

Mutual information

Mutual Information can be proven equal to Information

Gain for binary problems. For mutli-class problems (with

global feature lists) like we present in this report however,

the two are not equal (although rather similar). Thus we

present Mutual Information with its own equation as a

separate feature selection algorithm here.

where F is the discrete random variable `feature' that

takes the value vF = f1; 0g (feature F occurs in document

or not), Ck is the discrete random variable `category' that

takes the values vCk = f1; 0g (document belongs to

category Ck or not).

The probabilities can be estimated by using the various

document counts from the training set.

Then the values can be weighted and summarized to

create a global ranked list of features:

chi square (chi)

Feature Selection by X2 testing is based on Pearson's

X2 (chi square) test. The X2 test is often used to test the

independence of two variables. The null-hypothesis is that

the two variables are completely independent of each

other. The higher value of the X2 test, the closer

relationship the variables have.

In feature selection, the X2 test measures the

independence of a feature and a category. The null-

hypothesis here is that the feature and category are

completely independent, i.e. that the feature is useless for

categorizing documents. The higher X2 value for a

(feature, category) pair, the less independent they are.

Hence, the features with the highest X2 values for a

category should perform best for categorizing documents.

NGL coefficient

The NGL coefficient presented is a variant of the Chi

square metric. It was originally named a `correlation

coefficient', but we follow Sebastiani and name it `NGL

coefficient' after the last names of the inventors Ng, Goh,

and Low. The NGL coefficient looks only for evidence of

positive class membership, while the chi square metric also

selects evidence of negative class membership.

Hence, it is called a `one-sided' chi square metric . In

their experiments, it performed better than chi square. It

was better than Odds Ratio and Mutual Information on

some feature set sizes, and worse on other.

GSS coefficient

The GSS coefficient was originally presented as a

`simplified chi square function'. We follow Sebastiani and

name it GSS after the names on the inventors Galavotti,

Sebastiani, and Simi.

The experiments showed far better results when using

max as a globalizing strategy rather than average, hence we

follow them on that:

4.Text classification of k-NN classifier

In pattern recognition, the k-nearest neighbor algorithm

(k-NN) is a method for classifying objects based on closest

training examples in the feature space. k-NN is a type of

instance-based learning, or lazy learning where the

function is only approximated locally and all computation

is deferred until classification. The k-nearest neighbor

algorithm is amongst the simplest of all machine learning

algorithms: an object is classified by a majority vote of its

neighbors, with the object being assigned to the class most

common amongst its k nearest neighbors (k is a positive

integer, typically small). If k = 1, then the object is simply

assigned to the class of its nearest neighbor.The same

method can be used for regression, by simply assigning the

property value for the object to be the average of the values

of its k nearest neighbors. It can be useful to weight the

contributions of the neighbors, so that the nearer neighbors

contribute more to the average than the more distant ones.

http://en.wikipedia.org/wiki/Pattern_recognition
http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Feature_space
http://en.wikipedia.org/wiki/Instance-based_learning
http://en.wikipedia.org/wiki/Lazy_learning
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Regression_analysis

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 3, Issue 2, February 2014

ISSN: 2278 – 1323 All Rights Reserved © 2014 IJARCET 282

(A common weighting scheme is to give each neighbor a

weight of 1/d, where d is the distance to the neighbor. This

scheme is a generalization of linear interpolation.)

The neighbors are taken from a set of objects for which

the correct classification (or, in the case of regression, the

value of the property) is known. This can be thought of as

the training set for the algorithm, though no explicit

training step is required. The k-nearest neighbor algorithm

is sensitive to the local structure of the data.Nearest

neighbor rules in effect compute the decision boundary in

an implicit manner. It is also possible to compute the

decision boundary itself explicitly, and to do so in an

efficient manner so that the computational complexity is a

function of the boundary complexity.

Algorithm

Figure: 4.1 Example of k-NN classification.

The test sample (green circle) should be classified either

to the first class of blue squares or to the second class of

red triangles. If k = 3 it is assigned to the second class

because there are 2 triangles and only 1 square inside the

inner circle. If k = 5 it is assigned to the first class (3

squares vs. 2 triangles inside the outer circle).The training

examples are vectors in a multidimensional feature space,

each with a class label. The training phase of the algorithm

consists only of storing the feature vectors and class labels

of the training samples.In the classification phase, k is a

user-defined constant, and an unlabelled vector (a query or

test point) is classified by assigning the label which is most

frequent among the k training samples nearest to that query

point.Usually Euclidean distance is used as the distance

metric; however this is only applicable to continuous

variables. In cases such as text classification, another

metric such as the overlap metric (or Hamming distance)

can be used. Often, the classification accuracy of k-NN can

be improved significantly if the distance metric is learned

with specialized algorithms such as Large Margin Nearest

Neighbor or Neighborhood components analysis.k-NN is a

special case of a variable-bandwidth, kernel density

"balloon" estimator with a uniform kernel.

Parameter selection : The best choice of k depends upon

the data; generally, larger values of k reduce the effect of

noise on the classification, but make boundaries between

classes less distinct. A good k can be selected by various

heuristic techniques, for example, cross-validation. The

special case where the class is predicted to be the class of

the closest training sample (i.e. when k = 1) is called the

nearest neighbor algorithm.The accuracy of the k-NN

algorithm can be severely degraded by the presence of

noisy or irrelevant features, or if the feature scales are not

consistent with their importance. Much research effort has

been put into selecting or scaling features to improve

classification. A particularly popular approach is the use of

evolutionary algorithms to optimize feature scaling.

Another popular approach is to scale features by the

mutual information of the training data with the training

classes.In binary (two class) classification problems, it is

helpful to choose k to be an odd number as this avoids tied

votes. One popular way of choosing the empirically

optimal k in this setting is via bootstrap method.

Properties : The naive version of the algorithm is easy to

implement by computing the distances from the test sample

to all stored vectors, but it is computationally intensive,

especially when the size of the training set grows. Many

nearest neighbor search algorithms have been proposed

over the years; these generally seek to reduce the number

of distance evaluations actually performed. Using an

appropriate nearest neighbor search algorithm makes k-NN

computationally tractable even for large data sets. The

nearest neighbor algorithm has some strong consistency

results. As the amount of data approaches infinity, the

algorithm is guaranteed to yield an error rate no worse than

twice the Bayes error rate (the minimum achievable error

rate given the distribution of the data). k-nearest neighbor

is guaranteed to approach the Bayes error rate, for some

value of k (where k increases as a function of the number

of data points). Various improvements to k-nearest

neighbor methods are possible by using proximity graphs.

The k-NN algorithm can also be adapted for use in

estimating continuous variables. One such implementation

uses an inverse distance weighted average of the k-nearest

multivariate neighbors. This algorithm functions as

follows:

1. Compute Euclidean or Mahalanobis

distance from target plot to those that were

sampled.

2. Order samples taking for account

calculated distances.

3. Choose heuristically optimal k nearest

neighbor based on RMSE done by cross

validation technique.

4. Calculate an inverse distance weighted

average with the k-nearest multivariate neighbors.

http://en.wikipedia.org/wiki/Decision_boundary
http://en.wikipedia.org/wiki/Euclidean_distance
http://en.wikipedia.org/wiki/Continuous_variable
http://en.wikipedia.org/wiki/Continuous_variable
http://en.wikipedia.org/wiki/Continuous_variable
http://en.wikipedia.org/wiki/Hamming_distance
http://en.wikipedia.org/wiki/Large_Margin_Nearest_Neighbor
http://en.wikipedia.org/wiki/Large_Margin_Nearest_Neighbor
http://en.wikipedia.org/wiki/Large_Margin_Nearest_Neighbor
http://en.wikipedia.org/wiki/Neighbourhood_components_analysis
http://en.wikipedia.org/wiki/Variable_kernel_density_estimation
http://en.wikipedia.org/wiki/Variable_kernel_density_estimation
http://en.wikipedia.org/wiki/Kernel_%28statistics%29
http://en.wikipedia.org/wiki/Heuristic_%28computer_science%29
http://en.wikipedia.org/wiki/Cross-validation_%28statistics%29
http://en.wikipedia.org/wiki/Feature_selection
http://en.wikipedia.org/wiki/Evolutionary_algorithm
http://en.wikipedia.org/wiki/Mutual_information
http://en.wikipedia.org/wiki/Nearest_neighbor_search
http://en.wikipedia.org/wiki/Nearest_neighbor_search
http://en.wikipedia.org/wiki/Consistency_%28statistics%29
http://en.wikipedia.org/w/index.php?title=Bayes_error_rate&action=edit&redlink=1
http://en.wikipedia.org/wiki/Mahalanobis_distance
http://en.wikipedia.org/wiki/Mahalanobis_distance
http://en.wikipedia.org/wiki/Mahalanobis_distance
http://en.wikipedia.org/wiki/RMSE

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 3, Issue 2, February 2014

ISSN: 2278 – 1323 All Rights Reserved © 2014 IJARCET 283

Using a weighted k-NN also significantly improves the

results: the class (or value, in regression problems) of each

of the k nearest points is multiplied by a weight

proportional to the inverse of the distance between that

point and the point for which the class is to be predicted.

Naive Bayes classifier

A Naive Bayes classifier is a simple probabilistic

classifier based on applying Bayes' theorem with strong

(naive) independence assumptions. A more descriptive

term for the underlying probability model would be

"independent feature model".In simple terms, a naive

Bayes classifier assumes that the presence (or absence) of a

particular feature of a class is unrelated to the presence (or

absence) of any other feature. For example, a fruit may be

considered to be an apple if it is red, round, and about 4" in

diameter. Even if these features depend on each other or

upon the existence of the other features, a naive Bayes

classifier considers all of these properties to independently

contribute to the probability that this fruit is an

apple.Depending on the precise nature of the probability

model, naive Bayes classifiers can be trained very

efficiently in a supervised learning setting. In many

practical applications, parameter estimation for naive

Bayes models uses the method of maximum likelihood; in

other words, one can work with the naive Bayes model

without believing in Bayesian probability or using any

Bayesian methods.In spite of their naive design and

apparently over-simplified assumptions, naive Bayes

classifiers have worked quite well in many complex real-

world situations. In 2004, analysis of the Bayesian

classification problem has shown that there are some

theoretical reasons for the apparently unreasonable efficacy

of naive Bayes classifiers. Still, a comprehensive

comparison with other classification methods in 2006

showed that Bayes classification is outperformed by more

current approaches, such as boosted trees or random

forests.An advantage of the naive Bayes classifier is that it

only requires a small amount of training data to estimate

the parameters (means and variances of the variables)

necessary for classification. Because independent variables

are assumed, only the variances of the variables for each

class need to be determined and not the entire covariance

matrix.

Parameter estimation : All model parameters (i.e., class

priors and feature probability distributions) can be

approximated with relative frequencies from the training

set. These are maximum likelihood estimates of the

probabilities. A class' prior may be calculated by assuming

equiprobable classes (i.e., priors = 1 / (number of classes)),

or by calculating an estimate for the class probability from

the training set (i.e., (prior for a given class) = (number of

samples in the class) / (total number of samples)). To

estimate the parameters for a feature's distribution, one

must assume a distribution or generate nonparametric

models for the features from the training set. If one is

dealing with continuous data, a typical assumption is that

the continuous values associated with each class are

distributed according to a Gaussian distribution.

Sample correction : If a given class and feature value never

occur together in the training set then the frequency-based

probability estimate will be zero. This is problematic since

it will wipe out all information in the other probabilities

when they are multiplied. It is therefore often desirable to

incorporate a small-sample correction in all probability

estimates such that no probability is ever set to be exactly

zero.

Constructing a classifier from the probability model : The

discussion so far has derived the independent feature

model, that is, the naive Bayes probability model. The

naive Bayes classifier combines this model with a decision

rule. One common rule is to pick the hypothesis that is

most probable; this is known as the maximum a posteriori

or MAP decision rule.

IV.DISCUSSION

Despite the fact that the far-reaching independence

assumptions are often inaccurate, the naive Bayes classifier

has several properties that make it surprisingly useful in

practice. In particular, the decoupling of the class

conditional feature distributions means that each

distribution can be independently estimated as a one

dimensional distribution. This in turn helps to alleviate

problems stemming from the curse of dimensionality, such

as the need for data sets that scale exponentially with the

number of features. Like all probabilistic classifiers under

the MAP decision rule, it arrives at the correct

classification as long as the correct class is more probable

http://en.wikipedia.org/wiki/Classifier_%28mathematics%29
http://en.wikipedia.org/wiki/Bayes%27_theorem
http://en.wikipedia.org/wiki/Statistical_independence
http://en.wikipedia.org/wiki/Statistical_independence
http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Maximum_likelihood
http://en.wikipedia.org/wiki/Bayesian_probability
http://en.wikipedia.org/wiki/Efficacy
http://en.wikipedia.org/wiki/Boosted_trees
http://en.wikipedia.org/wiki/Random_forests
http://en.wikipedia.org/wiki/Random_forests
http://en.wikipedia.org/wiki/Random_forests
http://en.wikipedia.org/wiki/Covariance_matrix
http://en.wikipedia.org/wiki/Covariance_matrix
http://en.wikipedia.org/wiki/Covariance_matrix
http://en.wikipedia.org/wiki/Maximum_likelihood
http://en.wikipedia.org/wiki/Nonparametric
http://en.wikipedia.org/wiki/Pseudocount
http://en.wikipedia.org/wiki/Pseudocount
http://en.wikipedia.org/wiki/Pseudocount
http://en.wikipedia.org/w/index.php?title=Probability_model&action=edit&redlink=1
http://en.wikipedia.org/wiki/Classifier
http://en.wikipedia.org/wiki/Decision_rule
http://en.wikipedia.org/wiki/Decision_rule
http://en.wikipedia.org/wiki/Decision_rule
http://en.wikipedia.org/wiki/Maximum_a_posteriori
http://en.wikipedia.org/wiki/Curse_of_dimensionality

International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 3, Issue 2, February 2014

ISSN: 2278 – 1323 All Rights Reserved © 2014 IJARCET 284

than any other class; hence class probabilities do not have

to be estimated very well. In other words, the overall

classifier is robust enough to ignore serious deficiencies in

its underlying naive probability model. Other reasons for

the observed success of the naive Bayes classifier are

discussed in the literature cited below.

V.CONCLUSION

In this paper presented a range of novel algorithms for

solving real-world text classification problems arising in

different situations. The main focus of our work has been

exploiting the notion of inter-class relationships in text

classification systems. Proposed four inter-class

relationships and developed algorithms based on them for

different tasks. I learned mappings between label-sets to

build better classifiers and developed Java data mining

tools. Exploited the confusion between related classes to

handle scalability issues in large-scale multi-class

classification. Overcame the problem of overlapping class

boundaries by proposing enhancements to discriminative

classifiers for multi-labeled classification.

VI.FUTURE WORK

This work leads to some interesting avenues of future

work that someone would like to explore. It is possible to

theoretically understand cross-training better and devise

formal ways of studying related label-sets. I would like to

extend my work in detecting evolving label-sets to larger

scales and devise ways to track other kinds of evolution in

label-sets apart from detecting new classes. The most

exciting direction of this work is the idea of building next-

generation text classification platforms which could be

used for research as well as real world deployment.

Studying this under a formal framework thus leading to

guarantees about the platform is a promising line of work.

REFERENCES
[1] Jung-Yi Jiang, Ren-Jia Liou, and Shie-Jue Lee, “A Fuzzy Self-

Constructing Feature Clustering Algorithm for Text Classification”,

Member, IEEE March 2011

[2] Dalmau M.C and Florez O.W.M, “Experimental Results of the

Signal Processing Approach to Distributional Clustering of Termson

Reuters-21578 Collection,” Proc. 29th European Conf. IR Research,

pp. 678-681, 2007

[3] Dhillon I.S, Mallela S, and Kumar R, “A Divisive Information

Theoretic Feature Clustering Algorithm for Text Classification,” J.

Machine Learning Research, vol. 3, pp. 1265-1287, 2003.

[4] Hisham Al-Mubaid and Syed A. Umair, “A New Text

Categorization Technique Using Distributional Clustering and

Learning Logic”, IEEE transactions on knowledge and data

engineering, vol. 18, no. 9, September 2006.

[5] Ienco D and Meo R, “Exploration and Reduction of the Feature

Space by Hierarchical Clustering,” Proc. SIAM Conf. Data Mining,

pp. 577-587, 2008

[6] Kim .H, Howland P and Park H, “Dimension Reduction in Text

 Classification with Support Vector Machines,” J. Machine

 Learning Research, vol. 6, pp. 37-53, 2005

[7] Lewis D.D, “Feature Selection and Feature Extraction for Text

Categorization,” Proc. Workshop Speech and Natural

Language, pp. 212-217, 2005

[8] Oja E, Subspace Methods of Pattern Recognition. Research

Studies Press, 2009

[9] SaulL.K. and Roweis S.T, “Nonlinear Dimensionality

Reduction by Locally Linear Embedding,” Science, vol. 290,

pp. 2323-2326, 2000

[10] Sebastiani F, “Machine Learning in Automated Text

Categorization,” ACM Computing Surveys, vol. 34, no. 1, pp.

1-47, 2002.

[11] Shawe-Taylor J and Cristianini N, Kernel Methods for Pattern

Analysis. Cambridge Univ. Press, 2004

[12] Slonim N and Tishby N, “The Power of Word Clusters for

Text Classification,” Proc. 23rd European Colloquium on

Information Retrieval Research (ECIR), 2001

[13] Tenenbaum J.B,de Silva V, and Langford J.C, “A Global

Geometric Framework for Nonlinear Dimensionality

Reduction”, Science, vol. 290, pp. 2319-2323, 2008

[14] Yang Y and Liu X, “A Re-Examination of Text Categorization

Methods,” Proc ACM SIGIR, pp. 42-49, 2004

[15] Yen J and Langari , Fuzzy Logic-Intelligence, Control and

Information, Prentice-Hall, 2010.

Sivakumar.T is an Assistant Professor in

Department of Computer Science and

Engineering, Maharaja Institute of

Technology. He received his Bachelor of

computer science and Master of Computer

Applications from Bharathiar University and

Master of Engineering in Anna University.

He has 5 years of teaching experiences from various Colleges and 1 year

Industrial experience. He has many publications to his credit in various

international conferences and journals. He has attended a number of

conferences, seminars and workshops His area of interest includes Data

mining, Artificial neural network.

Kaleeswaran.A received his B.Sc (Physics)

and MCA from Bharathiar University,

Coimbatore and M.E (SE) in Anna University

Coimbatore. He has four years of teaching

experience. He is now working as a Assistant

Professor in Department of Computer Science

and Engineering in Park College of

Engineering and Technology, Coimbatore. He has many publications to

his credit in various international conferences and journals. He has

attended a number of conferences, seminars and workshops His research

interest is mainly focused on Data mining and Image Processing.

