Abstract— Natural language interface to database system is one of the area of Natural language processing. A recent development in Natural Language Processing is Question Answering System. Question Answering accepts queries formulated in natural language and respond to the user with a specific answer in Natural Language Sentence. Keyword based question answering system in NLIDB for crop statistic information has been described. Different components had been developed in this system for processing the query and translating it into formal SQL query. Based on the results from the SQL query, a natural language answer is generated.

Index Terms—Natural Language Processing (NLP), Natural Language Interface To Database (NLIDB), Question and Answering System(QAS), Structured Query Language(SQL), Telugu.

I. INTRODUCTION

Information plays a major role in our daily life. Database is the major source for data storage. SQL is the widely used database language to retrieve data from database. Hence everyone is not familiar with the usage of SQL. So that drawback makes the researchers to turned out to use natural language (NL), i.e English, Telugu, Hindi etc [4]. One can express their ideas and emotions better by using natural language instead of artificial language like C, C++, and JAVA. NLIDB System is solution to this problem which is concerned with the interaction between human languages and the machine. This system allows any type of users mainly inexperienced/illiterate ones to retrieve data from database in a simple way [2][5]. The Question Answering system about crops like crops price, production, yield in Telugu has been described. This system uses keyword based matching technique to convert the Natural Language Query in Telugu to SQL [3].

II. RELATED WORK

Different techniques are used to develop NLIDB system such as [6]

1. Pattern Matching system,
2. Syntax based system,
3. Semantic based system

III. PROPOSED SYSTEM

We proposed keyword based technique for Telugu language interface (TLI) system. In this system, we will map all keywords in the user query to the database. All the keywords in the user query to the database. If the keyword matches, then the corresponding SQL query is generated and required answer will be retrieved from the database. The main advantage of the system is if the input is ambiguous, the system will manage to give reasonable output based on the keywords in the query. The architecture for keyword matching system is expressed in detail in section IV.

IV. SYSTEM ARCHITECTURE

- At first, user gives Telugu language query which is converted into WX-Notation using code converters, which is then divided into a set of tokens by using whitespace as delimiter in query analyzer.
- Each token is then searched in the knowledgebase, if a token is found in knowledgebase, its information is stored in memory as <key,values> pair. Otherwise it is simply discarded assuming that it does not provide any useful information in deciding the query frame.
- A natural language query equaling the user requested query is generated from the <key,values> stored in memory and a
conformation is requested from the user asking whether the generated question is same as the one which user is expecting to be.

- If the user gives negative acknowledgement, then alternative natural language query is generated until the user gives positive acknowledgement or there are alternative queries that can be generated.
- If there are no alternative queries then the system aborts the user request and informs the user to ask the same question in a different manner so that there may be a possibility that user can get the answer.
- If the user gives positive conformation then the system can decide on the query frame and can transform the given natural language query into a set of SQL queries.
- These SQL queries are executed over the database and the retrieved data set is transformed into Telugu natural language sentences using a template based approach and is forwarded to the user as the answer.

Algorithm: Keyword Matching

Step 1: Input the query in Telugu language
Step 2: Telugu language query is converted into WX notation
Step 3: Tokenize the query
Step 4: if token==keywords (table_name)
 4.1: Equivalent predefined NL query is generated to user
 else
 goto step 6
Step 5: if user_ack==true //Positive acknowledgement
 5.1: SQL query is generated and executed
 5.2: Corresponding NL answer is retrieved from database
 else
 Alternative NL Query is generated until user gives positive acknowledgement
 If user_ack==true
 goto Step 5
 else
 goto step 6
Step 6: invalid input query, try again.

The following example depicts the conversion of Telugu language query to its SQL query.

EXAMPLE:

కడ఩ నందు రాగిదరతెలు఩ుము
kadapa naMxu rAgi Xara weVlupumu (WX-Notation)

Place Name: కడ఩ (kadapa)
Crop Name: రాగి (rAgi)
Keyword: దర (Xara [Price])
The [price] query frame is selected
SELECT price
FROM crop_info
WHERE Crop_Name='rAgi'.

VI. RESULTS

Telugu language query regarding crop statistics information as shown in the above example is given as input. Then the processing of algorithm is performed when the button is pressed. The system starts working by utilizing the semantic information in the knowledge base. Hence it implements the SQL query for query frame and the result is displayed to the user in natural language. The figure 2 shows the screen shot for inputting the Telugu query such as “2000 లో కడ఩ నందు రాగిదరతెలు఩ుము” and the figure 3 shows the screen shot for confirmation of user query such as
“2000 సంవత్సరము నాలుగు రోజు తాతా వందరి సంస్థానము ఆపాత కామం వంటి భాగం సరిగా ఉంటే అయితే తరపు మీదుగా అంచనా ఉంటే ఇది సరిగా ఉంటే అయితే తరపు మీదుగా అంచనా ఉంటే”.

Figure 4 depicts result generation after processing the input such as “2000 సంవత్సరము నాలుగు రోజు తాతా వందరి సంస్థానము ఆపాత కామం వంటి భాగం 449.00, 496.00 రూపాయలు”.

VII. CONCLUSION

The NLIDB systems developed so far are basically used for business purpose. Here we are using this NLIDB system for crop statistic information which is very much useful for the uneducated people who are from agriculture background. Our QA system follows keyword based matching approach. All words/tokens need not be knowledgebase. The word which contain semantic information will be found in knowledgebase. Our system could achieve high successes rate if we restrict the coverage of questions. The future scope of the work could be done to improve the linguistic coverage of questions.

REFERENCES

Jyothsna Cherapanamjeri is presently working as Assistant Professor in Department of Computer Science and Engineering, Yoganandha Institute of Technology and Science, Tirupathi, India. She received master degree in Computer Science and Engineering in Sri Venkateswara University (SVU), Tirupathi. Her area of interest is Natural Language Processing.

Lavanya Lingareddy, is presently working as Assistant Professor in Department of Computer Science and Engineering, Yoganandha Institute of Technology and Science, Tirupathi, India.. She received master degree in Computer Science and Engineering in SVCE, Tirupathi, affiliated to JNTU A. Her area of interest secure computing and Natural Language Processing.

Hima Bindu K is presently working as Assistant Professor in Department of Computer Science and Engineering, Yoganandha Institute of Technology and Science, Tirupathi, India.. She received master degree in Computer Science in SVE, A.Rangampet, affiliated to JNTUA. Her research work was published in international and national conferences and also in international journals. Her area of interest is software engineering, cloud computing, secure computing and Natural Language Processing.