
ISSN: 2278 – 1323
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 2 Issue 8, August 2013

2514
www.ijarcet.org

SECURING DISTRIBUTED ACCOUNTABILITY

FOR DATA SHARING IN CLOUD COMPUTING

N. RAMESH

1
,

D. ANILM.E

2
, M. KIRAN

3

1, M.TECH Scholar, VEC, Kavali

 2, Assistant Professor, VEC, Kavali

 3, Assistant Professor, JCET

ABSTRACT:

The growing trend towards grid computing

and cloud computing provides enormous potential

for allowing dynamic, distributed and data

demanding applications such as sharing and

processing of large-scale scientific data. Cloud

computing is the use of computing of sources

(hardware and software) that are delivered as a

service over a network. A main characteristic of

the cloud services is that users’ data are usually

processed remotely in unknown machines that

users do not operate. It can be converted into a

significant roadblock to the wide adoption of

cloud services. To deal with this problem, we

suggest a highly decentralized accountability

framework to keep track of the actual usage of the

user’s data in cloud. The Cloud Information

Accountability framework projected in this work

conducts automated logging and distributed

auditing of relevant access performed by anything,

passed out at any point of time at any cloud

service provider. It has two main elements: logger

and log harmonizer. The proposed methodology

will take concern of the JAR file by converting the

JAR into obfuscated code which will adds an

additional layer of security to the communications.

Apart from that we are going to enlarge the

security of user’s data by provable data

possessions for integrity verification.

Index Terms— Cloud computing, information

accountability framework, data sharing,

Provable data possession

1. INTRODUCTION

 The Cloud Information Accountability

framework proposed conduct the automated

logging and distributed auditing of relevant access

performed by anything, taken out at any point of

time at any cloud service provider. It has two main

components: logger and log harmonizer. The JAR

file includes a set of simple controlling rules

identifying whether and how the cloud servers and

possibly other data stakeholders are authorized to

access the content itself. Away from each other we

are going to check the integrity of the JRE on the

systems on which the logger components is

initiated. This integrity checks are carried out by

using oblivious hashing. The proposed

methodology will also take concern of the JAR

file by converting the JAR into obfuscated code

which will adds an additional layer of security to

the infrastructure. Apart from that we are going to

enlarge the security of user’s data by provable data

possessions for integrity verification. Based on the

configuration settings defined at the time of

creation, the JAR will give procedure control

connected with logging, or will give only logging

functionality. When for the logging, every time

there is an access to the data, the JAR will

automatically produce a log record.

ISSN: 2278 – 1323
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 2 Issue 8, August 2013

2515
www.ijarcet.org

2. PROBLEM STATEMENT

A user, who registered to a certain cloud

service, generally needs to send his data as well as

associated access control policies to the service

provider. After the data are received by the cloud

service provider, the service supplier will have

approved access rights, such as write, read, and

copy, on the data. Using conservative access

control mechanisms, once the access rights are

approved, the data will be fully available at the

service provider. In organize to track the actual

usage of the data; we aim to develop novel logging

and auditing techniques which satisfy the

following requirements:

1. The logging should be decentralized in order to

get used to the dynamic nature of the cloud. More

specifically, log files should be strongly bounded

with the equivalent data being controlled, and

require minimal infrastructural maintain from any

server.

2. Every access to the user’s data should be

properly and automatically logged. This requires

integrated methods to authenticate the entity that

accesses the data, verify, and record the actual

processes on the data as well as the time that the

data have been right to used.

3. Log files should be consistent and tamper proof

to avoid illegal deletion, insertion, and alteration

by malicious parties. Healing mechanisms are also

desirable to restore damaged log files caused by

technical problems.

4. Log files should be drive back to their data

holder periodically to inform them of the current

usage of their data. The log files should be

retrievable at anytime by their data owners when

needed in spite of the location where the files are

stored.

3. CLOUD INFORMATION AND

 ACCOUNTABILITY
The Cloud Information Accountability

framework proposed in this work conducts

automated logging and distributed auditing of

relevant access performed by anything, carried out

at any point of time at any cloud service provider.

It has two major works: logger and log

harmonizer.

3.1. Data Flow

The overall CIA framework, combining

data, users, logger and harmonizer at the

beginning, each user generates a pair of public and

private keys depend on Identity-Based Encryption.

This IBE method is a Weil-pairing-based IBE

scheme, using the generated key, the user will

construct a logger component which is a JAR file,

to store up its data items. The JAR file contains a

set of simple access control rules specifying

whether and how the cloud servers and possibly

other data stakeholders are authorized to access

the content itself. Then the user sends the JAR file

to the cloud service supplier that he subscribes to.

To authenticate the CSP to the JAR, we utilize

Open SSLbased certificates, where in a trusted

certificate authority certifies the CSP. In the

occasion that access is requested by a user, we

make use of SAML-based validation, where in a

trusted uniqueness provider issues certificates

verifying the user’s identity based on his

username.

Fig.1: The cloud information accountability

 Framework

Once the authentication is successful, the

service provider or the user will be allowed to

ISSN: 2278 – 1323
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 2 Issue 8, August 2013

2516
www.ijarcet.org

access the data together with this JAR. Depending

on the design settings defined at the instance of

establishment, the JAR will provide usage control

related with logging, or will give only logging

functionality. As for the logging, each instance

there is an access to the data; the JAR will

routinely generate a log record, encrypt it using

the public key dispersed by the data owner, and

pile up it along with the data. The encryption of

the log file put a stop to unauthorized changes to

the file by attackers. The data owner could decide

on to use again the same key pair for all JARs or

create particular key pairs for separate JARs.

Using separate keys can improve the security

without set up any overhead except in the

initialization phase.

A customer supplies some perceptive data

in a file inside a virtual machine (VM) hosted by a

supplier that has subscribed to. Upon uploading

the data, fail safe methods within the cloud will

naturally back it up, and execute load balancing by

generates redundancies across a number of virtual

servers and physical servers in the service

provider’s reliance domain. From the file’s

construction to the backup processes, large

numbers of data transport occur across virtual and

physical servers and several memory read/write

transactions to both virtual and physical memories

are concerned. If all such transactions and the

creation of new second copy files are logged,

checked and accounted for, we would be able to

mark out the file history and log the access history

and comfortable modifications, i.e. achieving

cloud accountability and audit ability

Fig.2: The importance of accountability and

Audit ability

4. AUTOMATED LOGGING MECHANISM

4.1. The Logger Structure

We leverage the programmable capability

of JARs to conduct programmed logging. A logger

constituent is a nested Java JAR file which stores a

user’s data items and equivalent log files. The

projected JAR file consists of one outer JAR

surrounding one or more inside JARs. The main

dependability of the outer JAR is to handle

validation of entities which want to access the data

stored in the JAR file. The data owners may not

know the exact CSPs that are going to handle the

data and so, authentication is individual according

to the server’s functionality rather than the

server’s URL or identity. Suppose a policy may

state that Server X is acceptable to download the

data if it is a storage server. The outer JAR may

also have the access control functionality to

enforce the data owner’s necessities, specified as

Java policies, on the usage of the data. A Java

policy identifies which permissions are available

for a particular piece of code in a Java application

environment. The permissions articulated in the

Java policy are in terms of File System

Permissions. Though, the data owner can specify

ISSN: 2278 – 1323
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 2 Issue 8, August 2013

2517
www.ijarcet.org

the permissions in user-centric terms as opposed to

the usual code-centric security offered by Java,

using Java validation and Authorization Services.

In addition, the outer JAR is also in charge of

selecting the correct internal JAR according to the

identity of the entity who requests the data

Fig.3: Structure of JAR file

4.2. Log Record Generation

Log records are generated by the logger

component. Logging take place at any access to

the data in the JAR, and new log entries are

attached sequentially, in order of creation LR (r1, .

. . rk). Each record ri is encrypted individually and

appended to the log file. In exacting, a log record

obtains the following form

Here, ri indicates that an entity identified by ID

has performed an action Act on the user’s data at

time T at location Loc. The component h((ID, Act,

T, Loc)| (ri-1)|….|r1)corresponds to the checksum

of the records preceding the newly introduce one,

concatenated with the main content of the record

itself. The checksum is calculated using a collision

free hash function. The component sig indicates

the signature of the record created by the server. If

more than one file is switched by the same logger,

an additional Obj ID field is added to each record.

5. END-TO-END AUDITING MECHANISM

End to End auditing mechanism describes

our distributed auditing mechanism including the

algorithms for data owners to query the logs

regarding their data.

5.1. Push and Pull Mode

To allow users to be timely and accurately

informed about their data usage, our distributed

logging mechanism is complemented by an

innovative auditing mechanism. We support two

complementary auditing modes:

1) Push mode.

2) Pull mode.

Push mode:

The logs are periodically pushed to the

data owner (or auditor) by the harmonizer. The

push achievement will be activated by either type

of the following two events: one is that the time

passes by for a certain period according to the

temporal timer inserted as part of the JAR file; the

other is that the JAR file exceeds the size

predetermined by the content owner at the moment

of creation. After the logs are sent to the data

owner, the log files will be discarded, so as to free

the space for future access logs. The length of with

the log files, the error accurate information for

those logs is also dumped.

Pull mode:

This mode agrees to auditors to recover the

logs anytime when they want to check the recent

access to their own data. The pull note consists of

an FTP pull command, which can be concerns

from the command line. For immature users, a

wizard containing a batch file can be effortlessly

built. The request will be sent to the harmonizer,

and the user will be up to date of the data’s

locations and obtain an integrated copy of the

genuine and sealed log file.

ISSN: 2278 – 1323
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 2 Issue 8, August 2013

2518
www.ijarcet.org

6. EXPERIMENTAL RESULTS

In the experiment examine the time taken

to create a log file and then measure the overhead

in the system. Through respect to time, the

overhead can occur at three points: during the

validation, in encryption of a log record, and in the

merging of the logs and with respect to storage

overhead, we observe that our architecture is very

light weight, in that the barely data to be stored are

given by the real files and the connected logs.

Additionally, JAR act as a compressor of the files

that it handles. In many files can be handled by the

same logger component. To this level, we examine

whether a single logger component, used to handle

extra than one file, the outcome in storage

overhead.

Fig.4: Time to create log files of different sizes.

6.1. Log Creation Time

In this, we are interested in finding out the

time taken to create a log file when there are

entities continuously accessing the data, causing

continuous logging. It is not surprising to see that

the time to create a log file increases linearly with

the size of the log file. particularly, the time to

generate a 100 Kb file is about 114.5 ms though

the time to create a 1 MB file averages at 731 ms.

With this trial as the baseline, one can make a

decision the amount of time to be specified

between dumps, maintenance other variables like

space restrictions or network passage in mind.

Fig. 6: Time to merge log files.

6.2. Time Taken to Perform Logging

This set of experiments studies the effect

of log file size on the logging performance. We

compute the average time taken to grant an access

plus the time to write the corresponding log

record. The time for giving way any access to the

data items in a JAR file includes the time to

evaluate and enforce the applicable policies and to

locate the requested data items.

7. CONCLUSION

We initiate modern move toward

automatically logging any access to the data in the

cloud mutually with an auditing mechanism. Our

approach allows the data holder to not only audit

his content but also enforce strong back-end

protection if needed. At a distance from that we

have enclosed PDP methodology to improve the

integrity of owner’s data and we plan to refine our

approach to verify the integrity of JRE. For that

we will seem to be into whether it is possible to

control the advantage of secure JVM being

developed by IBM and we would like to enhance

our PDP architecture from consumer end which

will allow the consumer to check data distantly in

an efficient manner in multi cloud environment.

VIII. REFERRENCES

[1] B. Chun and A.C. Bavier, “Decentralized Trust

Management and Accountability in Federated

Systems,” Proc. Ann. Hawaii Int’l Conf. System

Sciences (HICSS), 2004

ISSN: 2278 – 1323
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 2 Issue 8, August 2013

2519
www.ijarcet.org

[2] G. Ateniese, R. Burns, R. Curtmola, J. Herring,

L. Kissner, Z. Peterson, and D. Song, “Provable

Data Possession at Untrusted Stores,” Proc. ACM

Conf. Computer and Comm. Security, pp. 598-

609, 2007.

[3] E. Barka and A. Lakas, “Integrating Usage

Control with SIP-Based Communications,” J.

Computer Systems, Networks, and Comm., vol.

2008, pp. 1-8, 2008.

[4] D. Boneh and M.K. Franklin, “Identity-Based

Encryption from the Weil Pairing,” Proc. Int’l

Cryptology Conf. Advances in Cryptology,

pp. 213-229, 2001.

[5] R. Bose and J. Frew, “Lineage Retrieval for

Scientific Data Processing: A Survey,” ACM

