
ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology

Volume 1, Issue 4, June 2012

709

All Rights Reserved © 2012 IJARCET

A Model for identifying Guilty Agents in

Data Transmission

Shreyta Raj

, Dr. Ravinder Purwar , Ashutosh Dangwal

Abstract-- This research paper presents a formal

method for representing and detecting inconsistencies of

combined secrecy models is to detect when the PC

distributor’s sensitive data has been leaked by their

agents, and if possible to identify the agent that leaked

the data. Data leakage is a silent type of threat. This

sensitive information can be electronically distributed

via e-mail, Web sites, FTP, instant messaging,

spreadsheets, databases, and any other electronic means

available – all without your knowledge. Data allocation

strategies (across the agents) are proposed that improve

the probability of identifying leakages. These methods

do not rely on alterations of the released data (e.g.,

watermarks). In some cases the distributor can also

inject “realistic but fake” data records to further

improve our chances of detecting leakage and

identifying the guilty party. A model for assessing the

“guilt” of agents using C# dot net technologies with MS

sql server as backend is proposed to develop.

Algorithms for distributing objects to agents, in a way

that improves our chances of identifying a leaker is

aloes presented. Finally, the option of adding “fake”

objects to the distributed set is also considered. Such

objects do not correspond to real entities but appear.

Index Terms - Data Leakage, Data Privacy, Fake

Record,.

 I. INTRODUCTION

While doing business, practical necessities may

motivate the use of secrecy models in combination

and in addition other business policies may be

necessary sometimes sensitive data must be handed

over to supposedly trusted third parties. For example,

a hospital may give patient records to researchers

who will devise new treatments. Similarly, a

company may have partnerships with other

companies that require sharing customer data.

Another enterprise may outsource its data processing,

so data must be given to various other companies.

We call the owner of the data the distributor and the

supposedly trusted third parties the agents. Our goal

is to detect when the distributor’s sensitive data has

been leaked by agents, and if possible to identify the

agent that leaked the data. We consider applications

where the original sensitive data cannot be perturbed.

Perturbation is a very useful technique where the data

is modified and made “less sensitive” before being

handed to agents. For example, one can add random

noise to certain attributes, or one can replace exact

values by ranges. However, in some cases it is

important not to alter the original distributor’s data.

For example, if an outsourcer is doing our payroll, he

must have the exact salary and customer bank

account numbers. If medical researchers will be

treating patients (as opposed to simply computing

statistics), they may need accurate data for the

patients.

Traditionally, leakage detection is handled by

watermarking, e.g., a unique code is embedded in

each distributed copy. If that copy is later discovered

in the hands of an unauthorized party, the leaker can

be identified. Watermarks can be very useful in some

cases, but again, involve some modification of the

original data. Furthermore, watermarks can

sometimes be destroyed if the data recipient is

malicious.

ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology

Volume 1, Issue 4, June 2012

710

All Rights Reserved © 2012 IJARCET

In this work, unobtrusive techniques for detecting

leakage of a set of objects or records have been

studied. For example, after giving a set of objects to

agents, the distributor discovers some of those same

objects in an unauthorized place. At this point the

distributor can assess the likelihood that the leaked

data came from one or more agents, as opposed to

having been independently gathered by other means.

Using an analogy with cookies stolen from a cookie

jar, if we catch Freddie with a single cookie, he can

argue that a friend gave him the cookie. But if we

catch Freddie with 5 cookies, it will be much harder

for him to argue that his hands were not in the cookie

jar. If the distributor sees “enough evidence” that an

agent leaked data, he may stop doing business with

him, or may initiate legal proceedings. In this paper

we develop a model for assessing the “guilt” of

agents. We also present algorithms for distributing

objects to agents, in a way that improves our chances

of identifying a leaker. Finally, we also consider the

option of adding “fake” objects to the distributed set.

Such objects do not correspond to real entities but

appear realistic to the agents. In a sense, the fake

objects acts as a type of watermark for the entire set,

without modifying any individual members. If it

turns out an agent was given one or more fake objects

that were leaked, then the distributor can be more

confident that agent was guilty.

 II. EXISTING SYSTEM

A. Perturbation

Data perturbation refers to a data transformation

process typically performed by the data owners

before publishing their data. The goal of performing

such data transformation is two-fold. On one hand,

the data owners want to change the data in a certain

way in order to disguise the sensitive information

contained in the published datasets, and on the other

hand, the data owners want the transformation to best

preserve. For example, one can add random noise to

certain attributes, or one can replace exact values by

ranges. However, in some cases it is important not to

alter the original distributor’s data. For example, if an

outsourcer is doing our payroll, he must have the

exact salary and customer bank account numbers. If

medical researchers will be treating patients (as

opposed to simply computing statistics), they may

need accurate data for the patients.

B. Watermarking

Traditionally, leakage detection is handled by

watermarking, e.g., a unique code is embedded in

each distributed copy. If that copy is later discovered

in the hands of an unauthorized party, the leaker can

be identified. Watermarks can be very useful in some

cases, but again, involve some modification of the

original data. Furthermore, watermarks can

sometimes be destroyed if the data recipient is

malicious.

III. PROPOSED SYSTEM

Unobtrusive techniques for detecting leakage of a set of

objects or records have been studied. After giving a set of

objects to agents, the distributor discovers some of those

same objects in an unauthorized place. (For example, the

data may be found on a web site, or may be obtained

through a legal discovery process.) At this point the

distributor can assess the likelihood that the leaked data

came from one or more agents, as opposed to having been

independently gathered by other means. Using an analogy

with cookies stolen from a cookie jar, if Freddie with a

single cookie has been cached, he can argue that a friend

gave him the cookie. But if Freddie with 5 cookies has been

cached, it will be much harder for him to argue that his

hands were not in the cookie jar. If the distributor sees

“enough evidence” that an agent leaked data, he may stop

doing business with him, or may initiate legal proceedings.

A model for assessing the “guilt” of agents has been

developed. An algorithm for distributing objects to agents,

in a way that improves our chances of identifying a leaker

has been proposed. The option of adding “fake” objects to

the distributed set also been considered. Such objects do

not correspond to real entities but appear realistic to the

agents. In a sense, the fake objects acts as a type of

watermark for the entire set, without modifying any

individual members. If it turns out an agent was given one

or more fake objects that were leaked, then the distributor

can be more confident that agent was guilty.

Advantages-

ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology

Volume 1, Issue 4, June 2012

711

All Rights Reserved © 2012 IJARCET

 After giving a set of objects to agents, the

distributor discovers some of those same

objects in an unauthorized place.

 At this point the distributor can assess the

likelihood that the leaked data came from

one or more agents, as opposed to having

been independently gathered by other

means.

 If the distributor sees “enough evidence”

that an agent leaked data, he may stop doing

business with him, or may initiate legal

proceedings.

 To develop a model for assessing the “guilt”

of agents.

 We also present algorithms for distributing

objects to agents, in a way that improves our

chances of identifying a leaker.

 Consider the option of adding “fake” objects

to the distributed set. Such objects do not

correspond to real entities but appear.

 If it turns out an agent was given one or

more fake objects that were leaked, then the

distributor can be more confident that agent

was guilty.

IV. IMPLEMENTATION PLAN

In this application, we try to implement a model application

to detect the data leakages between distributor and agents.

The system is developed in C# dot net. We use Microsoft

SQL Server 2000 as database for this application. When the

distributor sends a file to agent, it is considered as fake

object for that particular agent, in this sequence file name

and file path is stored in the database for future reference.

Similarly when the agent sends a file to the

unauthorized agent the sequence is store in the

database. Thus we can find the guilt agent. The

probability function is calculated based on the

number of guilt agents by the number of file transfers

between the agent and unauthorized person.

A. MODULE DESCRIPTION

1- Login / Registrations - This is a module

mainly designed to provide the authority to a

user in order to access the other modules of

the project.

2- Data Transfer- This module is mainly

designed to transfer data from distributor to

agents. The same module can also be used

for illegal data transfer from authorized to

agents to other agents

3- Guilt Model Analysis- This module is

designed using the agent – guilt model.

Here a count value(also called as fake

objects) are incremented for any transfer of

data occurrence when agent transfers data.

Fake objects are stored in database.

4- Agent Guilt Model- This module is mainly

designed for determining fake agents. This

module uses fake objects (which is stored in

database from guilt model module) and

determines the guilt agent along with the

probability. A graph is used to plot the

probability distribution of data which is

leaked by fake agents.

To compute this probability, we need an estimate for

the probability that values can be “guessed” by the

target.

B. Algorithm Steps

Step: 1 Distributor select agent to send data

 The distributor selects two agents and gives

requested data R1, R2 to both agents.

Step: 2 Distributor creates fake object and allocates it

to the agent

The distributor can create one fake object (B = 1) and

both agents can receive one fake object (b1 = b2 = 1).

If the distributor is able to create more fake objects,

he could further improve the objective.

Step: 3 check number of agents, who have already

received data

ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology

Volume 1, Issue 4, June 2012

712

All Rights Reserved © 2012 IJARCET

 Distributor checks the number of agents, who

have already received data.

Step: 4 Check for remaining agents

Distributor chooses the remaining agents to send the

data. Distributor can increase the number of possible

allocations by adding fake object.

Step: 5 Select fake object again to allocate for

remaining agents

Distributor chooses the random fake object to

allocate for the remaining agents.

Step: 6 Estimate the probability value for guilt agent

To compute this probability, we need an estimate for

the probability that values can be “guessed” by the

target.

V. WHY USE DATAMINING

Data mining is the process of extracting patterns from

data. Data mining is becoming an increasingly

important tool to transform the data into information.

It is commonly used in a wide range of profiling

practices such as marketing, surveillance fraud

detection and scientific discovery. Data mining can

be used to uncover patterns in data but is often

carried out only on samples of data. The mining

process will be ineffective if the samples are not a

good representation of the larger body of data. Data

mining cannot discover patterns that may be present

in the larger body of data if those patterns are not

present in the sample being "mined". Inability to find

patterns may become a cause for some disputes

between customers and service providers. Therefore

data mining is not foolproof but may be useful if

sufficiently representative data samples are collected.

The discovery of a particular pattern in a particular

set of data does not necessarily mean that a pattern is

found elsewhere in the larger data from which that

sample was drawn. An important part of the process

is the verification and validation of patterns on other

samples of data

VI. LITERATURE REVIEW

The guilt detection approach we present is related to

the data provenance problem, tracing the lineage of S

objects implies essentially the detection of the guilty

agents.

 Suggested solutions are domain specific,

such as lineage tracing for data warehouses

and assume some prior knowledge on the

way a data view is created out of data

sources.

 Watermarks were initially used in images,

video and audio data whose digital

representation includes considerable

redundancy. Watermarking is similar in the

sense of providing agents with some kind of

receiver-identifying information. However,

by its very nature, a watermark modifies the

item being watermarked. If the object to be

watermarked cannot be modified then a

watermark cannot be inserted. In such cases

methods that attach watermarks to the

distributed data are not applicable.

 Recently, works have also studied marks

insertion to relational data.

 There are also lots of other works on

mechanisms that allow only authorized users

to access sensitive data through access

control policies. Such approaches prevent in

some sense data leakage by sharing

information only with trusted parties.

However, these policies are restrictive and

may make it impossible to satisfy agents’

requests.

ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology

Volume 1, Issue 4, June 2012

713

All Rights Reserved © 2012 IJARCET

Algorithm Results to find out Guilty Agents

Note: a002 is the guilty agent.

Probability distribution of Agent Data

7. CONCLUSION

The likelihood that an agent is responsible for a leak is

assessed, based on the overlap of his data with the leaked

data and the data of other agents, and based on the

probability that objects can be “guessed” by other means.

The algorithms we have presented implement a variety of

data distribution strategies that can improve the

distributor’s chances of identifying a leaker. We have

shown that distributing objects judiciously can make a

significant difference in identifying guilty agents,

especially in cases where there is large overlap in the data

that agents must receive.

REFERENCES

[1] R. Agrawal and J. Kiernan. Watermarking relational databases.

In VLDB ’02: Proceedings of the 28th international conference on

Very Large Data Bases, pages 155–166. VLDB Endowment, 2002.

[2] P. Bonatti, S. D. C. di Vimercati, and P. Samarati. An algebra

for composing access control policies. ACM Trans. Inf. Syst.

Secur., 5(1):1–35, 2002.

[3] P. Buneman, S. Khanna, and W. C. Tan. Why and where: A

characterization of data provenance. In J. V. den Bussche and V.

Vianu, editors, Database Theory - ICDT 2001, 8th International

Conference, London, UK, January 4-6, 2001, Proceedings, volume

1973

of Lecture Notes in Computer Science, pages 316–330. Springer,

2001.

[4] P. Buneman and W.-C. Tan. Provenance in databases. In

SIGMOD ’07: Proceedings of the 2007 ACM SIGMOD

international conference on Management of data, pages 1171–

1173, New York, NY, USA, 2007. ACM.

[5] Y. Cui and J. Widom. Lineage tracing for general data

warehouse transformations. In The VLDB Journal, pages 471–480,

2001.

[6] V. N. Murty. Counting the integer solutions of a linear equation

with unit coefficients. Mathematics Magazine, 54(2):79–81, 1981.

[7] P. Papadimitriou and H. Garcia-Molina. Data leakage

detection.Technical report, Stanford University, 2008.

 [8] J. J. K. O. Ruanaidh, W. J. Dowling, and F. M. Boland.

Watermarking digital images for copyright protection. I.E.E.

Proceedings on Vision, Signal and Image Processing, 143(4):250–

256, 1996.

[9] R. Sion, M. Atallah, and S. Prabhakar. Rights protection for

relational data. In SIGMOD ’03: Proceedings of the 2003 ACM

SIGMOD international conference on Management of data, pages

98–109, New York, NY, USA, 2003. ACM.

[10] L. Sweeney. Achieving k-anonymity privacy protection

usinggeneralization and suppression, 2002.

[11] S. U. Nabar, B. Marthi, K. Kenthapadi, N. Mishra, and R.

Motwani. Towards robustness in query auditing. In VLDB ’06:

Proceedings of the 32nd international conference on Very large

data bases, pages 151–162. VLDB Endowment, 2006.

[12] P. M. Pardalos and S. A. Vavasis. Quadratic programming

with one negative eigenvalue is np-hard. Journal of Global

Optimization, 1(1):15–22, 1991.

