
ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology

Volume 1, Issue 4, June 2012

419
All Rights Reserved © 2012 IJARCET

Design of Multi-Channel UART Controller

Based On FIFO and FPGA

 1
Deepchand Jaiswal

2
Dr. Rita Jain

3
Prof. M. Zahid Alam

 M.Tech Research scholar E.C. Department E.C. Department

 EC Dept. LNCT-Bhopal, India LNCT-Bhopal, India LNCT-Bhopal, India

. deepchand55@gmail.com

Abstract: This paper presents a multi-channel UART

controller based on FPGA (Field Programmable Gate Array).

UART a kind of serial communication circuit is used widely.

A universal asynchronous receive/transmit (UART) is an

integrated circuit which plays the most important role in

serial communication. The architecture of the system is

introduced. The flow charts of data processing as well as the

implementation state machine are also presented in detail.

The controller can be used to implement communications in

complex system with different Baud Rates of sub-controllers.

The controller is reconfigurable and scalable and it also can

be used to reduce time delays between sub-controllers of a

complex control system to improve the synchronization of

each sub-controller.

Keywords: FIFO, FPGA, UART, MULTI-CHANNEL,

I. INTRODUCTION

UART is a popular methodology of serial asynchronous

communication. The UART data frame is composed of a

start bit of one bit-length logic 0，5 to 8 bit-length data

bits and a stop bit of one. one and a half or two bit

length. There may be one bit-length checkout bit after

the data bits if it is necessary. And its characteristic is

that the frame contains only one character and it is

transmitted continuously one by one. Typically, the

UART is connected between a micro-processor and a

peripheral. Although UART is popular and the structure

of the flame is simple, it is inefficient. In this paper,

three disadvantages, which influence its efficiency, are

pointed out and solved.

(1) Usually, there is only one channel which can only

connect to a single peripheral in normal UART

controller. In this case the number of chips will increase

with the augment of peripherals, which may cost a lot of

space and resources

Fig．1 System architecture

(2) In general the interrupt request is an easy and

common method to notify the microprocessor of a

flame’s operation. But there comes a problem that the

burden of the processor will become heavier and heavier

when the interrupt request occurs more and more

frequently, i.e. when there are frequent interrupt requests

and only a few characters are transmitted during each

interrupt time, the processor’s implementation efficiency

will becomeex,, tersely low, It means that the processor

ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology

Volume 1, Issue 4, June 2012

420
All Rights Reserved © 2012 IJARCET

would spend a lot of time on processing small amount of

data without doing other necessary tasks.

(3) Although certain processor’s data bus is 32．bit wide

or more, the traditional UAI ’controller transmits only

one byte data to the microprocessor with which it

connected at a time. In this case，24 bits or more of data

bus are wasted．

 To solve the first problem more UART

channels in a single chip are required and the same as

ST16C554t“does．However, this scheme may result in

more frequent interrupts which will make the second

problem more serious. Considering both of them, the

issues are focused on the improvement of data

transmission efficiency during interrupt times． So in

this paper, the ideas of enhanced parallel processing of

data, novel interrupt controlling mechanism. As well as

utilizing the whole data bus width are put forward.

Realization is implemented using Verilog HDL on

FPGA．

II. SYSTEM ARCHITECTURE AND DESIGN

PRINCIPLE DESCRIPTION

As a UART controller, the service affects are micro-

processors and serial communication terminations (SCT)

．To be simple, it is assumed that the bus of

microprocessor is the same as 32．bit Motorola Power

PCT series and the SCT only has two transmission wires,

TXD (for transmitted data) and RXD (for received data)

．Therefore the main system, architecture of the

controller is shown in Fig．1 which is based on the

assumption presented here an d UART protoco1. The

architecture introduced in Fig.1 can be viewed as a

description of one channel and the others. In the

controller are exactly the same.

2.1 Modules of receiving flow

 The modules are shift registers, parity checkers and

receiving FIFOs. The shift registers connected to RXD

wires are used to transfer all inputting serial data into

parallel data. Which will be sent to parity checkers as

soon as a correct frame is received and they also check

the integrality of the frames? The parity checkers are

used to implement parity check, if it is necessary and

inform the FIFOs whether the receiving frames are

correct. The receiving FIFOs will store the data which

are correctly received until micro-processor intends to

read them．

2.2 Modules of sending flow

The modules are sending FIFOs parity checkers and shift

registers. The sending FIFOs will store data sent from

microprocessor while there still are data under

transmission on the TXD wires. The parity checkers here

are used to attach the start and stop bits to the arriving

frames as well as filling the checkout bit into frames if it

is necessary. Then the frames will be sent out serially by

the shift registers through TXD wires.

2.3 Other components

The baud-rate generator generates different baud-rate

clocks used as time benchmarks in UART transmission.

The CPU interface manages communications, including

buses control interrupts， reading signal, writing signal

etc. between the microprocessor and the controller. The

interrupt controller takes responsibility of managing the

interrupt requests generated by each channel and sending

them to microprocessor based on certain principles． To

improve the system efficiency, the design is focused on

how to accomplish more tasks in less time. In other

words more implementations in fewer system clock

periods are expected. There are two methods adopted in

this design, implementing correlative tasks in parallel as

many as possible and reducing the implementation steps

ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology

Volume 1, Issue 4, June 2012

421
All Rights Reserved © 2012 IJARCET

of the ordinal task. The first method is recommended

when there are weak constraints of time relationship

among tasks so it is adopted in the module design s of

shift registers parity checkers and FIFOs. The other

method works well when the constraints are strong such

as responding continuous interrupts on one wire which

should be implemented one by one． Therefore it is

adopted in interrupt controller module．

III. SENDING AND RECEIVING FLOWS DESIGN

There are three clocks that should be considered in the

design the first one is the system main clock which is the

basal time scale of all the tasks and it is very fast, the

clock is 50 MHz in this design： the second one is the

baud-rate clock which is the division of the main clock,

it is only used when there are requirements to send data

or to synchronize receiving data, the third one is the

clock of microprocessor instruction. Because the baud

rate clock and instruction clock are far slower than the

main clock, the pre-operations which are driven by the

main clock can be implemented during receiving process

and sending process, and it is possible to transmit data as

soon as it is ready. Considering the second problem

mentioned in Section l, it can be concluded that the time

of data transmission between controllers and

microprocessor will be reduced if all the 32 bits of data

bus are utilized。111is also is adopted in the design.

Using these methods, all the tasks will be accomplished

efficiently.

3.1 Module cooperation in sending flow

Based on the description in Section 2, the data flow of

sending process is shown in Fig.2. The conclusion of

Fig.2 is that there are two serial operations in the process

of frame composing which are the system choke points

(the first operation is indicated with label l and the

second one is indicated with label 2 in Fig.2. he first one

is due to Sending serially operation, so if a notification is

feed back to active the Writing into reparation, at the

same time that the frame is delivered this chock point

will be eliminated.

Fig．2 Operation flow of sending process

The state machine of Sending serially process is shown

in Fig．3. The state machine as well as the counters in

the Stop and the Notify states is driven by the baud rate

clock

Fig 3 State machine of sending serially

ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology

Volume 1, Issue 4, June 2012

422
All Rights Reserved © 2012 IJARCET

At the last count of the Stop counter, the state machine

would switch to the Notify state from the Stop state. The

Notify state in which the notification is generated and

the last stop bit ends, will last one baud rate clock. Then

the state machine will switch to the idle state. Because

the main clock, which is the benchmark of the frame

composing, is far faster than the baud-rate clock, a new

frame will be ready as soon as the Idle state occurs. All

of this assures that no time is needed to wait for a new

frame’s preparation, so the first chock point is eliminate.

3.2 Sending FIFO system design

The instruction clock of microprocessor is also faster

than the baud rate clock so the data from micro-

processor usually arrive at the moment when there are

data under transmission. To prevent system from waiting

all though the transmission, which is the second chock

point in Fig．2，the fresh data should be buffered

during the transmission. FIFO is adopted in the design

．and its width is 32-bit which is referred to the width of

data bus. In this paper, RAM integrated in FPGA is used

to realize the design of the FIFO to reduce the usage of

FPGA logic elements (LEs). Architecture of the sending

FIFO system is shown in Fig．4

Fig 4 Architecture of sending FIFO system

In order to satisfy the synthesizable condition of Verilog

HDL RAM ，the input bit width and the output one of

the FIFO should be the same. However, the Sh register,

whose length is only a frame length, is shorter than 32

bits, so a 32-bit register composed of LEs is required,

which will be used as a buffer between the FIFO and the

Shift register. It is quite necessary for the Indicator to

record how many bytes of data are in the 32-bit register.

That is because when there are less than 4 bytes of data

in the 32-bit register, such as the last time of

transmission, the Shift register should obtain the exact

amount of bytes to be transmitted. Thus the

implementation flow of the whole 32-bit width FIFO

system is shown in Fig．5

Fig 5 Sending FIFO implementation flow

It is indicated in Fig．5 that the writing process of

micro-processor can implement ceaselessly no mater

whether the previous data have been sent or not which

means that more times of writing process can be

implemented during each interrupt time. And during

each time at most four bytes of data can be written now,

compared with the input of one byte of data using

traditional method. So the time required for a whole task

is reduced．

3.3 Module cooperation in receiving flow

There is an important difference between the receiving

flows and the sending flow. It is that the transmission

ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology

Volume 1, Issue 4, June 2012

423
All Rights Reserved © 2012 IJARCET

velocity of the data source (microprocessor) is far faster

than that of the data destination (serial periphera1) in the

sending flow, while the situation is just the opposite in

the receiving flow. So the data from microprocessor

should be delivered to peripheral immediately to prevent

data cumuli in the sending flow. But in the receiving

flow, it is possible for the controller to buffer data until

microprocessor has time to respond to the receiving

request, which can be used to solve the second problem

mentioned in Section 1. Thus the requirement of the

reduction of data processing time in receiving flow is

focused on the Shift register module and parity checker

module in Fig.1. The state machine is shown in Fig.6

and it is driven by baud-rate clock which is used to

sample input signals.

Fig 6 State machine of receiving flow

In the state machine, the Check state is between the Data

state and the Stop state and it takes the responsibility of

parity checkout. Such design is based on the fact that the

baud, rate clock is designed as 16 times faster as input

signal so there are enough clock periods to check parity

during the arrival of stop bits, therefore, the parity

checkout can implement in parallel with the signal

sampling process． The state machine will switch to the

Notify state at the last count of the stop bits. The Notify

state takes the responsibility of notifying FIFOs to store

received data. The principle is the same as the Check

state an d the clock period would also be reduced In this

way All of these designs ensure that the correct data can

be stored in FIFOs as soon as a frame is received

completely, an d in this way, the system efficiency is

improved．

3.4 Receiving FIFO design

Different from the sending FIFO which is used to

prevent data cumuli the receiving FIFO focuses on

reducing the interrupt frequency. In the design ，

receiving interrupts are generated only when the quantity

of the data stored in FIFO goes beyond a threshold value

or it is time out for the FIFO to wait for the

microprocessor to receive data. The threshold is a certain

value between zeros an d FIFO depth. The architecture

of receiving FIFO system is shown in Fig.7

Fig 7 Architecture of receiving FIFO system

In the receiving flow, the 32一bit register and the Data

length indicator operate in the same manner as the

sending FIFO does, an d the whole 32一bit bus can be

utilized to increase the data transmission velocity. The

Overtime controller is active only when there still are

data in the FIFO or the register, an d its amount are not

beyond the threshold. In this case an overtime interrupt

will be generated to notify the micro--processor of

receiving request if the counter of overtime controller is

overflow. The whole implementation flow is shown in

Fig．8．To reduce the reading times of the

ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology

Volume 1, Issue 4, June 2012

424
All Rights Reserved © 2012 IJARCET

microprocessor, the Data length indicator only needs to

be accessed during the overtime interrupt.

Fig 8 Receiving FIFO implementation Flow

This is because the quantity of data stored in 32一bit

FIFO must be the multiple of 4 bytes on the arrival of

over-threshold interrupt To conclude, the parallel

implementations are optimized an d FIFOs are

redesigned to enhance transmission velocity by utilizing

the data bus adequately. Therefore, the efficiency is

improved an d more channels are able to cooperate in the

controller

IV. INTERRUPT CONTROLLER DESIGN

4.1 Scheme argumentation

The interrupt controller cooperates with both internal

channels an d external micro—processor, and the

efficiency of internal channels is assured by design s in

Section 3．So in this section, attentions should be paid

to the implementation of microprocessor who processes

tasks Interrupt service routine(ISR)is implemented by

microprocessor. Besides the reading an d the writing

processes, the most necessary task of ISR is to obtain

interrupt source an d interrupt state. So if the steps of

these processes are reduced, the efficiency of the ISR

will be improved In the realization of the controller, 16

UART channels are included, which means that there are

16 coequal interrupt sources to the interrupt controller.

Because of the coequality, the principle of interrupt

management is first in first serves (FIFS)，and interrupt

nesting is forbidden. So there comes a problem about

how to deal with the interrupts when more than one

channel send interrupt requests to the controller at the

same time. The first method is to arrange these interrupts

according to certain principle (it will be indicated later in

this section) and then send them out in order. The

disadvantage is that there are several interrupts generated

so that the processor has to switch into ISR frequently.

Then the processor should poll over to implement

relevant operations. It will lead to a mass of time

overhead in polling operations．

4.2 Scheme design

Based on the principles mentioned above, the

architecture of the interrupt controller is shown in Fig.9

which contains a 256-bit deep and bit wide FIFO. In the

design of all the channels the shortest time between two

ordinal interrupt requests is only one system clock

period. So if severa1 interrupts occur at the same time,

they should be written into the FIFO in one clock period.

To satisfy this condition，

Fig．9 Interrupt controller architecture

ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology

Volume 1, Issue 4, June 2012

425
All Rights Reserved © 2012 IJARCET

16 interrupts of each channel, including null interrupts

(no interrupt request in current channel) ，are written. A

new interrupt of a certain channel can not be generated

unti1 the previous ones are responded so 16× 16=256

bits of depth are required at 1east to store the interrupts

Implementation of the controller is shown in Fig．10.

The conclusion is that the time of null interrupts output

is the main time overhead.

Fig．10 Interrupt controller implementation

But the system main clock frequency is far faster than

interrupt generating frequency so the overhead can be

ignore.

IV SIMULATION AND VERIFICATION

To verify design of the controller a test bench is written

to make verification in ISE simulator The software

structure involved in the design of the following blocks-

UART block, FIFO blocks, Status Register Block, Baud

Generator block. The controller which interacts with all

of the above was designed and its design was discussed

earlier. Some components like UART and FIFO blocks

are used more than once. A single UART was designed

and verified. Then UART component was instantiated

four times to obtain four independent UARTs .Similarly

once FIFO block was designed and verified, it was

instantiated twice to obtain FIFO1 and FIFO2.Codes in

Verilog HDL were used to design the architecture of the

Multi UART controller.

Fig 11: Baud Rate Generator Output

Fig 9: Transmitting Sequence.

Fig 12: Receiver Response

ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology

Volume 1, Issue 4, June 2012

426
All Rights Reserved © 2012 IJARCET

 V. CONCLUTION

The paper presents design method of asynchronous FIFO

and structure of the controller. This controller is

designed with FIFO circuit block and UART (Universal

Asynchronous Receiver Transmitter) circuit block within

FPGA to implement communication in modern complex

control systems quickly and effectively. Form the

communication sequence diagrams; it is easily to know

that this controller can be used to implement

communication when master equipment and slaver

equipment are set at different Baud Rate. It also can be

used to reduce synchronization error between sub-

systems in a system with several sub-systems. The

controller is reconfigurable and scalable.

REFERENCES

1. S. E. Lyshevski, “Control Systems Theory with Engineering

Applications”, Birkhauser Boston, 2001.

2. Free scale semiconductor, Inc MPC860 Power QUICCTM family

user’s manua1．2004．

3. Li SG Gao D Y Nie PQ Study on multi task management unit MTU

of embedded micro NCS, Acta Aeronautical et Astronautic Sinica

2000；21(2)：134-137 in Chinese.

4. Liu L, Gao D, Y Zhang SB, et a1．Design of EM FPU in

embedded microprocessor Act a Aeronatuticaet Astronautics

Sinica2001；22(4)：308-31 1．[in Chinese]

5. Yean del J, Thulborn D, Jones S. An online testable UART

implemented using IFIS．1 5th IEEE VLSI Test et Astronautic

Symposium ，1997；344-349．

6. Elmenreich W, Delvai M, Time triggered communication with

UARTs．4th IEEE International Workshop on Factory

Communication Systems，2002；97-104．

7. Gallo R, Delvai M，Elmenreich W，eta1．Revision an d veil

fiction of an enhanced UART．IEEE International Workshop on

Factory Communication Systems，2004；315-318．

8. Delvai M，Eisenmann U, Elmenrichs W Intelligent UART module

for real-time applications. First Workshop on Intelligent Solutions in

Embedded Systems，2002；1 77—185．

9. X., Yang, “Industrial Data Communication and Control Networks”,

Beijing: TUP, 2003.6[9] B. Zeidman, “Designing with FPGAs &

CPLDs”, CMP Books, 2002

10. C. E. Cummings, “Simulation and Synthesis Techniques for

Asynchronous FIFO Design with Asynchronous Pointer

Comparisons”, SNUG San Jose 2002

