
ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology

Volume 1, Issue 4, June 2012

353
All Rights Reserved © 2012 IJARCET



Abstract—The tremendous growth of the World Wide Web

has made tools such as search engines and information retrieval

systems have become essential. In this dissertation, we propose

a fully distributed, peer-to-peer architecture for web crawling.

The main goal behind the development of such a system is to

provide an alternative but efficient, easily implementable and a

decentralized system for crawling, indexing, caching and

querying web pages. The main function of a webcrawler is to

recursively visit web pages, extract all URLs form the page,

parse the page for keywords and visit the extracted URLs

recursively. We propose an architecture that can be easily

implemeneted on a local (campus) network and which follows a

fully distributed, peer-to-peer architecture. The architecture

specifications, implementation details, requirements to be met

and analysis of such a system is discussed.

Index Terms— Peer to peer, Distributed,Crawling,indexing

I. INTRODUCTION

Web crawlers download large quantities of data and

browse documents by passing from one hypertext link to

another. A web crawler (also known as a web spider or web

robot) is a program or automated script which browses the

World Wide Web in a methodical, automated manner. This

process is called web crawling or spidering. Many sites, in

particular search engines, use spidering as a means of

providing up-to-date data.

Web crawlers are mainly used to create a copy of all

the visited pages for later processing by a search engine that

will index the downloaded pages to provide fast searches.

Crawlers can also be used for automating maintenance tasks

on a website, such as checking links or validating HTML

code. Also, crawlers can be used to gather specific types of

information from Web pages, such as harvesting e-mail

addresses (usually for spam). A web crawler is one type of

bot, or software agent. In general, it starts with a list of URLs

to visit, called the seeds. As the crawler visits these URLs, it

identifies all the hyperlinks in the page and adds them to the

list of URLs to visit, called the crawl frontier (usually

 Anup A. Garje, Department of Computer Technology, Veetmata Jijabai

Technilogical Institute,Matunga, Mumbai.India

anupg.007@gmail.com

Prof. Bhavesh Patel Department of Computer Technology, Veetmata

Jijabai Technilogical Institute,Matunga, Mumbai. India

bh_patelin@yahoo.co.in

Dr. B. B. Meshram Head of Dept. of Computer Technology, Veermata

Jijabai Technological Institute,Matunga Mumbai. India

bbmeshram@vjti.org.in

implemented as a queue). URLs from the frontier are

recursively visited according to a set of policies.

We present several issues to take into account when

crawling the Web. They lead to the fact that at design time of

a crawl, its intention needs to be fixed. The intention is

defined by the goal that a specific crawl is targeted at; this can

differ in terms of crawl length, crawl intervals, crawl scope,

etc. A major issue is that the Web is not static, but rather

dynamic and thus changes on the timescale of days, hours,

minutes. There are billions of documents available on the

Web and crawling all data and furthermore maintaining a

good freshness of the data becomes almost impossible. To

always keep the crawled data up-to-date we would need to

continuously crawl the Web, revisiting all pages we have

once crawled. Whether we want to do this depends on the

earlier mentioned crawling intention. Such an intention can

for example be that we want to cover a preferably big part of

the Web, crawl the Web for news on one topic or monitor one

specific Web site for changes.

 We discuss two different crawling strategies that

are related to the purpose of a crawl: incremental and

snapshot crawling. The strategies can be identified by

different frontier growth behavior.

In a snapshot strategy the crawler visits a URL only

once; if the same URL is discovered again it is considered as

duplicate and discarded. Using this strategy the frontier is

extended continuously with only new URLs and a crawl can

spread quite fast. This strategy is optimal if you want to e.g.

cover an either big or specific part of the Web once, or in

regular intervals. The incremental crawling strategy is

optimal for recurring continuous crawls with a limited scope;

when an already visited URL is rediscovered it is not rejected

but instead put into the frontier again. Using this strategy the

frontier queues will never empty and a crawl could go on for

an indefinite long time. This strategy is optimal for

monitoring a specific part of the Web for changes. Following

the crawling research field and relevant literature, we

distinguish not only between crawling strategies but as well

between crawler types. They are nevertheless related as

different crawling strategies are used for different crawler

types, which thus are related to the specific intentions we

pursue when crawling the Web. While the crawling strategies

are defined using the frontier growth behavior, the crawler

types are based upon the scope of a crawl. They include types

as broad, focused, topical or continuous crawling.

The two most important types of web crawling are;

broad and focused crawling. Broad (or universal) crawls

can be described as large crawls with a high bandwidth usage

where the crawler fetches a large number of Web sites and

goes as well into a high depth on each crawled site. This

crawl type fits to the intention of crawling a large part of the

Web, if not even the whole Web. Not only the amount of

collected Web data is important, but as well the completeness

Realizing Peer-to-Peer and Distributed Web

Crawler

Anup A Garje, Prof. Bhavesh Patel, Dr. B. B. Meshram

ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology

Volume 1, Issue 4, June 2012

354
All Rights Reserved © 2012 IJARCET

of coverage of single Web sites. Focused (or topical) crawls

on the other side are characterized by the fact that a number

of criteria are defined that limits the scope of a crawl (e.g. by

limiting the URLs to be visited to certain domains); the

crawler fetches similar pages topic-wise. This crawl type is

used with the intention to collect pages from a specific

domain, category, topic or similar.

II. CRAWLING - AN OVERVIEW

In the following section we will introduce both the Web

crawler as such and some commonly known crawling

strategies that can be applied to them. A Web crawler, also

called a robot or spider, is a software program that starts with

a set of URIs, fetches the documents (e.g. HTML pages,

service descriptions, images, audio files, etc.) available at

those URLs, extract the URLs, i.e. links, from the documents

fetched in the previous step and start over the process

previously described. That is it automatically downloads

Web pages and follows links in the pages, this way moving

from one Webpage to another.

 Fig :General architecture of a Web Crawler

 We will now shortly describe the basic steps that

a crawler is executing. What it basically does is executing

different specific steps in a sequential way. The crawler starts

by taking a set of seed pages, i.e. the URLs (Uniform

Resource Locator) which it starts with. It uses the URLs to

build its frontier, i.e. the list (that is a queue) of unvisited

URLs of the crawler. In the scope of one crawl this frontier is

dynamic as it is extended by the URLs extracted from already

visited pages. The edge of a frontier will be limited by the

number of URLs found in all downloaded documents (and by

politeness restrictions that are followed for different servers).

So once a URL is taken from the frontier queue it traverses

the following steps:

1. The crawler scheduler checks whether this page

is intended to be fetched, i.e. whether there are

no rules or policies that exclude this URL.

2. The document the URL points to is fetched by

the multithreaded downloader.

3. The crawler extracts links from the downloaded

document.

4. Based on given rules the crawler decides

whether it wants to permanently store the

downloaded documents, index them, generate

metadata etc...

5. The crawler feeds the extracted links to the

frontier queue.

The above steps are executed for all URLs that are

crawled by the Web crawler. Although a crawler has only one

frontier, the frontier has multiple queues that are filled with

URLs. Queues can be built based on different schemes: e.g.

one queue per host. Additionally the queues can be ranked

within the frontier which makes then that certain queues are

served earlier by the frontier than others. A similar issue is as

well the ranking of the URLs within the single queues.

During the setup of a crawl, it must be decided what URLs

get what priorities and get thus removed either early or late

from a queue to be processed further. If a frontier is not set

any limit and if the crawler disposes over unlimited hardware

resources, it may grow indefinitely. This can be avoided by

limiting the growth of the frontier, either by, e.g., restricting

the number of pages the crawler may download from a

domain, or by restricting the number of overall visited Web

sites, what would at the same time limit the scope of the

crawl. Whatever frontier strategy is chosen, the crawler

proceeds in the same way with the URLs it gets from the

frontier.

III. SYSTEM DESIGN AND IMPLEMENTATION

Architectural Details:

Our main goal is to realize a fully distributed, Peer-to-Peer

web crawler framework and highlight the features,

advantages and credibility of such a system. Our system,

named JADE, follows a fully decentralized distributed

architecture. A fully decentralized architecture means that

there will be no central server or control entity, all the

different components are considered to be of equal status (i.e.

peers). The system uses an overlay network, which could be a

local network for peer-to-peer communication and an

underlay network which is the network form which

information is crawled and indexed.

The overlay system provides a fully equipped framework

for peer-to-peer communication. The basic requirements

from such a network are an efficient communication

platform, an environment for distributed data management

and retrieval, a fault tolerance and self-administering and

peer managing network.

Our system manly comprises of peer-entities, which form

the atomic units of the system and can be used as standalone

or in a network. The following diagram shows the structural

components of a single peer-entity;

ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology

Volume 1, Issue 4, June 2012

355
All Rights Reserved © 2012 IJARCET

Fig : A peer entity

It consists of following components;

 Crawler

 Indexer

 Database component

If you are using Word, use either the Microsoft Equation

Editor or the MathType add-on (http://www.mathtype.com)

for equations in your paper (Insert | Object | Create New |

Microsoft Equation or MathType Equation). “Float over

text” should not be selected.

IV. SYSTEM INTERNALS

THE CRAWLER

As mentioned earlier, the main goal of our system

was to implement a fully distributed, P2P web crawler.

Traditionally, crawling process consisted of recursively

requesting for a webpage, extracting the links from that page,

and then requesting the pages from the extracted links. Each

page is parsed, indexed for keywords or other parameters and

then links fro the page are extracted. The crawler then calls

the extracted pages and thus the process continues.

Apart from the above mentioned crawling method,

another method exists, known as the proxy method. By using

a web proxy, that allows users to access pages from the web

through the proxy, we could index and parse the pages that

pass through the proxy. Thus only the pages visited by the

user will be indexed and parsed. Thus the user unknowingly

contributes in the indexing of the pages. The local caching of

the visited pages improves the access time of the system.

Advanced filtering can also be performed easily on the local

cache of visited pages.

Our system runs a large number of processes which

operate on data stacks and data queues that are filled during a

web crawl and indexing process. The proposed system does a

real-time indexing, that means all pages that pass the crawler

are instantly searchable (in contrast to batch-processing of

other search engine software).

THE INDEXER

The page indexing is done by the creation of a

'reverse word index' (RWI): every page is parsed, the words

are extracted and for every word a database table is

maintained. The database tables are held in a file-based

hash-table, so accessing a word index is extremely fast,

resulting in an extremely fast search. The RWIs are hashed

form in the database which leads to that the information not

stored in plaintext and therefore the security of the index

holder rises, since it is not possible to conclude who created

the data. At the end of every crawling procedure the index is

distributed over the peers participating in the P2P network.

Only index entries in the form of URLs are stored, no other

caching is performed. Jade implements its index structure as

a distributed hash table (DHT): a hash function is applied to

every index entry; the entry is then distributed to the

appropriate peer. The resulting index contains no information

about the origin of the keywords stored in it. Moreover,

shared filters offer customized protection against undesirable

content.

THE DATABASE

The database stores all indexed data provided by the

indexer and the P2P, which is added to the network. They are

each peer the data to fit his DHT and through the assigned

migration index of the directory. The structure of the

database will be balanced, binary search tree (AVL tree)

formed to a logarithmic search time on the number of

elements in the tree. AVL, The name derives from the

inventors and Adelson-Velsky Landis by whom this data

structure for balanced data distribution was developed in

1962. The AVL property ensures maximum performance in

terms of algorithmic order.

Tree nodes can be dynamically allocated and

de-allocated and an unused-node list is maintained. For the

PLASMA search algorithm, an ordered access to search

results are necessary, therefore we needed an indexing

mechanism which stores the index in an ordered way. The

database supports such access, and the resulting database

tables are stored as a single file. It is completely

self-organizing and does not need any set-up or maintenance

tasks that must be done by an administrator. Any database

may grow to an unthinkable number of records: with one

billion records a database request needs a theoretical

maximum number of only 44 comparisons.

We have implemented Kelondro database

subsystem for realizing the above mentioned requirements

and features. The Kelondro database, is an open source AVL

based database structure, which provides all he necessary

schema, functions and methods for inserting, querying,

modifying a AVL tree based database.

ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology

Volume 1, Issue 4, June 2012

356
All Rights Reserved © 2012 IJARCET

V. INFORMATION FLOW

Fig : Crawler Information Flow Diagram

The above diagram shows the flow of information in the

crawler system. The HTML file from a crawled URL is

loaded onto the httpProxyServelet module. This module is

the proxy process that runs in the background.

The file is then transferred to htpProxyCache module,

which provides the proxy cache and where the processing of

the file is delayed until the proxy is idle. The cache entry is

passed on to the plasmaSwitchboard module. This is the core

module that forms the central part of the system..

There the URL is stored into plasmaLURL where the URL

is stored under a specific hash. The URL's from the content

are stripped off, stored in plasmaLURL with a 'wrong' date

(the date of the URL's are not known at this time, only after

fetching) and stacked with plasmaCrawlerTextStack.

The content is read and splitted into rated words in

plasmaCondenser. The splitted words are then integrated into

the index with plasmaSearch. In plasmaSearch the words are

indexed by reversing the relation between URL and words:

one URL points to many words, the words within the

document at the URL. After reversing, one word points to

many URL's, all the URL's where the word occurrs. One

single word->URL-hash relation is stored in

plasmaIndexEntry. A set of plasmaIndexEntries is a reverse

word index. This reverse word index is stored temporarly in

plasmaIndexCache.

In plasmaIndexCache the single plasmaIndexEntry'ies are

collected and stored into a plasmaIndex – entry. These

plasmaIndex - Objects are the true reverse words indexes. In

plasmaIndex the plasmaIndexEntry - objects are stored in a

kelondroTree; an indexed file in the file system.

8 SEARCH/ QUERY FLOW

Fig: The Search/ Query Information Flow Diagram.

The above diagram shows the flow of a user query or a

keyword search in the system.

The keyword or the query entered by the user is passed

onto the httpdFileServelet process, which accepts the

information and passes it to the plasmaSwitchBoard module.

The query is validated and checked for consistency before

passing it to plasmaSearch module, which is the search

function on the index. In plasmaSearch, the

plasmaSearchResult object is generated by simultaneous

enumeration of URL hashes in the reverse word indexes

plasmaIndex. The result page is then generated from this

plasmaSearchResult object

VI. SYSTEM ANALYSIS

In this section we shall discuss certain security aspects,

software structure, advantages, disadvantages and future

scope of the proposed system.

 SECURITY & PRIVACY ASPECTS

The system largely

Sharing the index to other users may arise privacy concerns.

The following properties were decide and implemented to

take care of security & privacy concerns;

Private Index and

Index Movement

The local word index does not only

contain information that a peer created by

ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology

Volume 1, Issue 4, June 2012

357
All Rights Reserved © 2012 IJARCET

surfing the internet, but also entries from

other peers. Word index files travel along

the proxy peers to form a distributed hash

table. Therefore nobody can argue that

information that is provided by this peer

was also retrieved by this peer and

therefore by the peer’s personal use of the

internet. In fact it is very unlikely that

information that can be found on a peer

was created by the peer itself, since the

search process targets only peers where it

is likely because of the movement of the

index to form the distributed hash table.

During a test phase, all word indexes on a

peer will be accessible. The future

production release will constraint searches

to indexes entries on the peer that have

been created by other peers, which will

ensure complete browsing privacy.

Word Index

Storage and

Content

Responsibility

The words that are stored in the client’s

local word index are stored using a word

hash. That means that not any word is

stored, but only the word hash. You

cannot find any word that is indexed as

clear text. You can also not re-translate the

word hashes into the original word. This

means that you don't know actually which

words are stored in your system. The

positive effect is, that you cannot be

responsible for the words that are stored in

your peer. But if you want to deny storage

of specific words, you can put them into

the 'bluelist' (in the file

httpProxy.bluelist). No word that is in the

bluelist can be stored, searched or even

viewed through the proxy.

Peer

Communication

Encryption

Information that is passed from one peer

to another is encoded. That means that no

information like search words, indexed

URL's or URL descriptions is transported

in clear text. Network sniffers cannot see

the content that is exchanged. We also

implemented an encryption method,

where a temporary key, created by the

requesting peer is used to encrypt the

response (not yet active in test release, but

non-ascii/base64 - encoding is in place).

Access

Restrictions

The proxy contains a two-stage access

control: IP filter check and an

account/password gateway that can be

configured to access the proxy. The

default setting denies access to your proxy

from the internet, but allowes usage from

the intranet. The proxy and it's security

settings can be configured using the

built-in web server for service pages; the

access to this service pages itself can also

be restricted again by using an IP filter and

an account/password combination.

VII. CONCLUSION

Thus, one can note that as the size and usage of the

WWW increases, the use of a good Information retrieval

system comprising of indexers and crawlers becomes trivial.

The current web information retrieval systems provide too

much of censorship and restrictive policies. There is a need

for a distributed, free and a collective view of the task of

information retrieval and web page indexing and caching.

The system proposed aims to provide these views and design

goals.

The use of a censorship-free policy avoids all the

restrictions provided by current systems and enables full

coverage of the WWW as well as of “hidden web” or the

“deep web”. This is not possible using existing systems. Also

the use of Distributed Hash Tables (DHTs) and key based

routing provides a solid framework for a distributed

peer-to-peer network architecture. The proxy provides an

added functionality of caching web pages visited by the user,

which is performed in the background.

We believe that the system proposed by us will

prove to be a complete implementation of a fully distributed,

peer-to-peer architecture for web crawling, to be used on

small networks or campus networks. We believe that we have

clearly stated the requirements, implementation details and

usage advantages regarding such a system and highlighted its

purpose.

VIII. REFERENCES

1. Kobayashi, M. and Takeda, K. (2000). "Information

retrieval on the web". ACM Computing Surveys

(ACM Press) 32 (2): 144–173.

2. Boldi, Paolo; Bruno Codenotti, Massimo Santini,

Sebastiano Vigna (2004). "UbiCrawler: a scalable

fully distributed Web crawler". Software: Practice

and Experience.

3. Heydon, Allan; Najork, Marc (1999-06-26)

Mercator: A Scalable, Extensible Web Crawler.

http://www.cindoc.csic.es/cybermetrics/pdf/68.pdf.

4. Brin, S. and Page, L. (1998). The anatomy of a

large-scale hypertextual Web search engine.

5. Zeinalipour-Yazti, D. and Dikaiakos, M. D. (2002).

Design and implementation of a distributed crawler

and filtering processor. In Proceedings of the Fifth

Next Generation Information Technologies and

Systems (NGITS), volume 2382 of Lecture Notes in

Computer Science, pages 58–74, Caesarea, Israel.

Springer.

6. Ali Ghodsi. Distributed k-ary System: Algorithms

for Distributed Hash Tables. KTH-Royal Institute of

Technology, 2006.

7. Goyal, Vikram (2003), Using the Jakarta Commons,

Part I,

http://www.onjava.com/pub/a/onjava/2003/06/25/c

ommons.html

