
ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology

Volume 1, Issue 3, May2012

92

All Rights Reserved © 2012 IJARCET

EFFICIENT KEYWORD SEARCH IN

RELATIONAL DATABASES

 Navneet Kaur, Rajdeep Kaur , Navjot kaur
Lovely Professional University

Phagwara, Punjab

Abstract- A user who wants to get knowledge from a relational

database that needs to know about structured query languages

and database schema. Mostly users are not know to those

things, so searching knowledge from relational databases is

difficult to them. Where a keyword query input is a simple

search model that can be issued by writing a list of keywords

values, keyword search that place provide a solution of the

problem. Because a keyword input query can be interpreted

variously, a large number of outputs are returned. And indexing

helps to easily retrieved answers and with the help of indexing

we measure the performance of the CPU, execution time and

Disk memory consumed.

Index Terms- Relational databases, Keyword search, Indexing,

Ranking method.

I INTRODUCTION

Every organization has data that needs to managed,

analyzed and collected. A relational database system

completes these needs. Along with these features of a

relational database system come requirement for

maintaining and developing the database. Database

administrators, data analysts, and database designers need

to be able to convert the data in a database into useful data

for both day-to-day long-term planning and operations.

RDBMS a database system made up of various files with

data elements in two-dimensional array. It has the

capability to recalculate data elements to from various

relations resulting in a very great flexibility of data usage.

Relational database management system is a DBMS in

which data is saved in tables and the relationships among

the data are saved in tables. The data can be reassembled

and accessed in many different ways without change the

table forms. It is a program that lets we administer, create,

and update a relational database. Most commercial

relational database management system uses the (SQL)

Structured Query Language to access the database,

although SQL was changed after the development of the

relational database model and is not necessary for its use.

Another important feature of relational database systems is

that a each single database can be spread across different

tables. Relational database differs from flat-file databases,

in which every database is self-contained in a single table.

Database technology is growing is day by day. While a

rapid growth in the number of users who require to access

online databases without having a overall knowledge of the

query languages and schema. Keyword search was put

forward to solve this problem. Researcher`s wishes their

work can make people search semi-structured and

structured data just like using web searching engines.

Information Retrieval

Information retrieval (IR) is the area of study related with

searching for keyword, for information related keyword,

and metadata about keyword, as well as that of searching

relational databases, World Wide Web, and the structured

storage. There is repetition in the usage of the terms

information retrieval, text retrieval, and keyword retrieval,

but also has its own body of praxis, theory, literature, and

technologies. Information retrieval is interdisciplinary,

based on mathematics, library science, information

science, computer science, linguistics, cognitive

psychology, law and statistics. Automated IR systems are

used to eliminate what has been called IO (Information

Overload). Many public libraries and universities use

information retrieval (IR) systems to provide access to

journals, books and other related documents. Applications

of IR are Web search engines.

The rest of paper is organized as follows. Section II

describe the releated work where we study the idea how we

search the keyword. Section III describes the concept of

keyword search, keyword search difficulty and ranking

method. Section IV describe the architecture of keyword

search and in which show the result of indexing in the form

of tables and graphs. Section V describes the result of

keyword search length analysis according to the user enter

query length. Section VI describes how to search the entire

database in the database schema. Section VII describes

how to search all columns of all tables in the database for

ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology

Volume 1, Issue 3, May2012

93

All Rights Reserved © 2012 IJARCET

the keyword search and Section VIII include the

conclusion and future work.

II RELATED WORK

Guoliang Li & et. al (2009), “Progressive Keyword Search

in Relational Databases”. In this research Paper database

research information retrieval community has recently

recognized the benefits of keyword search, we introduce

keyword search benefits into relational databases [1].

Lu Qin & et. al (2009), “Scalable Keyword Search on

Large Data Streams” In this research Paper is widely

realized that the integration of IR (information retrieval)

and different database techniques provides users with a

wide range of high quality services. We significantly

eliminate the number of intermediate outputs when

processing joins over a data stream, and therefore can

obtain high efficiency [4].

Utharn Buranasaksee & et. al (2010), “Answer

Aggregation for Keyword Search over Relational

Databases”..In this paper formulate an answer aggregation

of keyword search over relational databases problem which

merges related joining tuples from multiple tables to a

single tuple to reduce redundancy in the results and

improve the search quality [6].

III KEYWORD SEARCH

Database research community; start to introduce

capabilities of keyword search to relational databases. Two

approaches of keyword search are Steiner tree and

candidate network. The candidate network find outputs

composed of related tuples by extending and generating a

candidate network following the primary and foreign key

relationship. The Steiner tree model the tuples in relational

database schema as a graph form, where edges are primary

and foreign key relationship and nodes are tuples.

A Keyword Search Difficulty

In order to we know which keywords to target now, it's

necessary to not only understand the demand for a given

phrase or term, but the work needed to obtain those

rankings. If mighty competitors block the top 10 results

and we're just starting out on the web engine, the uphill

battle for rankings record can take months or years of

support bearing little to no fruit. This is why it's necessary

to understand keyword difficulty.

B What Is Ranking Method?

We propose evaluating ranking overall design of database

for keyword query to obtain if any are better output to this

context than pivoted normalization ranked. Even if these

ranked functions do not determine improve search quality,

an alternate ranked scheme might allow optimizations in

query processing. These optimizations could eliminate

execution time without sacrificing search quality.

Another term, including node size and prestige,

compactness of outputs, can be added to the ranked

function. Although we doubt the existence of a “best”

ranking function, we should do thorough experiments with

the wealth of ranking operations described in the IR

(Information retrieval) literature.

IV ARCHITECTURE FOR KEYWORD

SEARCH

In this part the data model, architecture for Keyword

search method is discussed in detail and also discussed

certain keyword queries.

 Database And Keyword Query Model

Database systems can be classified into different models.

Now days, different data model are there, but we use

relational database model. Relational database model

define a collection of tables which contain all data.

4.1 SYSTEM ARCHITECTURE

Fig. 1.1 Architecture of keyword Search

 Query

Cleaning

 Keyword

Matching

 Record

 Ranking

Relevance Record

 Filtering

Record

Browsing

 Map

 Table

DB

 Keyword query

Filtered Record

Tree

ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology

Volume 1, Issue 3, May2012

94

All Rights Reserved © 2012 IJARCET

4.2 PROPOSED ARCHITECTURE (THE

PROPOSED SYSTEM WORKS IN FIVE

PHASES)

A Indexing the keyword

Index is one way to access the data quickly. Indexes can be

created on any relation of attributes. Queries that filter

using those attributes can obtain related tuples randomly

using the index, without having to check every tuple in

turn. Index is analogous to using the index of a book to go

directly to the every page on which the data we are looking

for is found i.e. we do not have to read the complete book

to find what we are looking for. Relational databases

systems typically supply various indexing techniques, each

one of which is optimal for some combination of relation

size, typical access pattern, and data distribution. Indexes

are usually not part of the database, as they are considered

a detailed implementation and indexes are usually

organized by the similar group that maintains the another

parts of the database. It should be noted that efficient

indexes use on primary and foreign keys can dramatically

improve the query performance. Because number of tuples

in a table and hash indexes result are constant time queries.

In which we different techniques of used for analyze the

performance.

 Non- Clustered Index

In which data is present in the form of arbitrary order. In

which logical order of data is present by the index. Data

rows are divided throughout the table regardless of the

value of indexed column or expression. Non-clustered

index have index keys in sequence order, with the leaf

node of the index that access the pointer to the record.

In a non-clustered index include:

1. The physical order of the rows is not same as the

index order.

2. Basically organized on non-primary key columns

that is used in WHERE, and JOIN clauses. It can be

more non-clustered index on a relational database table.

 Clustered Index

Cluster change the data block into a different order to

match the index, output in the row data being that is stored

in order. In which only one clustered index can be created

on a database table. Clustered indexes table can maximize

whole speed of retrieval, but usually where the data is

obtained sequentially in the similar or opposite order of the

clustered index. The Physical records are in particular

sequence order on various disks, the next row data item in

the order is fastly before or after the last one. The primary

property of a clustered index is sequence of the physical

data rows item in order with the index blocks item that

point to them. Many databases separate the data and

different index blocks into separate files, other blocks put

two completely separate data blocks within the same file.

We create that object where the physical sequence of rows

data is similar as the index sequence of the rows data and

the leaf level of clustered index obtain the actual data rows.

 Full Text Index

In SQL server, full text search is obtained using Full text

indexing. It provides full text input queries opposite

character based data. Searches can include multiple forms

of a phrase/word, phrase, words etc. We create full text

indexes for columns referenced in the queries. It is a made

oh word and phrase tokens derived from the indexed text.

 INDEXING RESULTS

a) Execution Time Consumed Analysis

When we search record in the database then we need to a

dataset. Firstly, we using that dataset we analyze the CPU,

execution time and memory consumed. This is all doing

with the help of different indexing techniques Non-

Clustered, Clustered, and Full-text Index. We easily

analyze the whole system performance. In Fig.1.2 and

table 1.1 describe, when we use the dataset that is

containing records 50,000 to 4,50,000. Based on this

dataset we analyze execution time for Non-Clustered,

Clustered, and Full Text index. In which when we have

50,000 then execution time for Non-Clustered Index is

322, Clustered Index for 387, and Full Text Index for 220.

With the help of we analyze how much execution time for

records. In the table and graphs we show different records

and they take different execution time. We easily analyze

which records for execution time minimum.

 Table 1.1 Records for Execution Time Analysis

Records Non

Clustered

Index

Clustered

Index

Full

Text

Index

50,000 322 387 220

1,00,000 776 789 387

1,50,000 1256 2787 587

2,00,000 1879 3773 867

2,50,000 2278 4967 976

3,00,000 2843 5867 1289

3,50,000 3523 7409 1489

4,00,000 4023 7798 1787

4,50,000 4684 8967 1867

ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology

Volume 1, Issue 3, May2012

95

All Rights Reserved © 2012 IJARCET

Fig.1.2 Execution Time Consumed

b) CPU Time Consumed Analysis

In which we used the same dataset that is used for

execution time analysis. In CPU time analysis when we

used record 1,00,000 then CPU time consumed for Non-

Clustered Index is 756, Clustered Index for 1434, and Full

Text Index for 587. In which we take different record and

analyze different CPU time consumed. With the help of

this we analyze which one records according to our

requirement is best that is take minimum CPU time

consumed.

 Table 1.2 Records CPU Time Analysis

Fig.1.3 CPU Time Consumed

c) Disk Memory Consumed Analysis

In which Disk Memory Consumption for we use different

records and we analyze the outputs for different records.

When we used record 3,50,000 then Disk Memory

Consumption for for Non-Clustered Index is 34782,

Clustered Index for 420, and Full Text Index for 28673.

Then we analyze for 3,50,000 records clustered index take

less memory. And with the help of this we easily analyze

which one records is best according to our requirement that

is used minimum CPU time consumed.

 Table 1.3 Records for Disk Memory Consumed

Records Non

Clustered

Index

Clustered

Index

Full

Text

Index

50,000 5033 109 5289

1,00,000 11782 130 10872

1,50,000 14897 208 15892

2,00,000 19672 263 16892

2,50,000 24762 290 25892

3,00,000 29673 373 24873

3,50,000 34782 420 28673

4,00,000 38873 480 29733

4,50,000 44893 529 50332

Records Non

Clustered

Index

Clustered

Index

Full Text

Index

50,000 344 643 367

1,00,000 756 1434 587

1,50,000 1254 4023 867

2,00,000 1864 4922 987

2,50,000 3076 6409 1172

3,00,000 3560 7023 1489

3,50,000 4489 8678 1698

4,00,000 5045 8992 1798

4,50,000 5467 9034 1967

ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology

Volume 1, Issue 3, May2012

96

All Rights Reserved © 2012 IJARCET

Fig.1.4 Disk Memory Consumed Analysis

B Searching the keyword query

In which we two terms query include cleaning and

keyword matching. When user enters a query then spelling

corrections and semantic linkage is checked and then

output is a cleaned query. And keyword search , in which

user enter a input query that input query search in the

database schema then find a output.

C Ranking the result

When user enter a keyword query as a input in the SQL

search engine, then user have many different options to

various tuples returned as a output query answer. For

finding relevant answer we rank the whole database on the

basis of particular query number of time present in the

database and query length. The ranking method is best for

obtain the relevant answer.

Where Wk= total no. of keyword present in the database

with respect to the user input keyword query.

 Qt = total no. of keyword present in the user input

query(length of the query).

D Filtering relevance record

When user search keyword query in the search engine then

we define the threshold value, according to threshold value

we filtering the relevance record. When answer match with

the given keyword query then we find the output.

E Record Browsing

When system find the related information with the

answered tuple set , then answer set needs to be designed

in the form of schema graph. A schema graph include all

the relational database tables, and the relationship between

the tables.

V RESULT OF KEYWORD SEARCH QUERY

LENGTH ANALYSIS

In which we describe according to the query length how

much time to take searching record in the database. In

above given Fig 4.4 and Table 4.4 we search record nitu

that keyword length is 4 and that take time 156 ms for

search record in the database. And in which we easily

analyze for which record how much time to search data in

the database.

Table 1.4 Records for Keyword Search Analysis

Fig.1.5 Keyword Search Query Length Analysis

Search name Time Consumed

Nav 140

Nitu 156

Lilly 200

Navjot 300

Pardeep 320

Rupinder 380

Score (Pi , Q) = ∑ Wk / Qt

ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology

Volume 1, Issue 3, May2012

97

All Rights Reserved © 2012 IJARCET

VI HOW TO SEARCH THE ENTIRE

DATABASE

Microsoft Operations Manager (MOM), uses the SQL

Server for saved the data all different computer,

performance and alert related knowledgeable data. We

narrowed the problem down to something needed a script

that can find all different MOM tables for a particular

string. We had no such script, so we ended up finding data

manually. That's when I really felt the requirement that

script and came up with that stored procedure

"SearchAllTables". It obtain a string as input query

parameter goes and find all varchar, char, nvarchar, nvchar

columns of all different tables, owned by all different users

in the current relational database.

VII HOW TO SEARCH ALL COLUMNS OF

ALL TABLES IN A DATABASE FOR A

KEYWORD

MOM (Microsoft Operations Manager) really felt the need

for such a record and came up with this particular stored

Procedure “SearchAllTables”. It select a search keyword as

input query parameter goes and find char, varchar, nchar,

and nvarchar columns of all different tables, owned by all

different users in the current relational database. This

procedure free to extend find other different datatypes.

Results of this stored procedure contain two different

columns:

• The table and column name in which the answer

keyword was found.

• The actual content of the column.

Here`s a word of problem, before we find and start this

procedure. This procedure is very easily on smaller

databases, it could take one or more hours to complete, on

a huge database with too much large character columns

and a large number of rows. If we are trying to run it on a

huge database, be prepared to wait. It is necessary to use

Full-Text index find feature for free text finding, but it

doesn`t make sure for this kind of particular ad-hoc

requirements.

This stored procedure is create in the required database.

And below how we run:

To search all columns of all tables in management database

for the keyword “Neetu”

 EXEC SearchAllTables „Neetu‟

 GO

VIII CONCLUSION

In this paper, firstly we indexing the whole database and

find the performance of CPU, execution time, and disk

memory consumption. After we proposed a new method

ranking that is best for finding relevant answer from a

relational database schema. With the help of graph results

we examine how much time take to search according to

keyword input query length. In future, we work upon the

keyword search in distributed environment.

ACKNOWLEDGEMENT

Foremost, I would like to express my sincere gratitude to

Ms. Rajdeep Kaur who gave her heart whelming full

support in the completion of this research paper with her

stimulating suggestions and encouragement to go ahead in

all the time of the research paper. She has always been a

source of inspiration and confidence for me. She has

beaconed light to me as a guide at all stages of preparation

of my research paper. At last I am very thankful to my

GOD who has given me this golden opportunity to do

M.Tech as well as to do research work.

REFERENCES

[1] Guoliang Li, Xiaofang Zhou, Jianhua Feng, Jianyong

Wang (2009)†” Progressive Keyword Search in Relational

Databases” IEEE (2009).

[2] Phyo Thu Thu Khine, Htwe Pa Pa Win, Khin New Ni

Tun (2011), “Efficient Relational Keyword Search

System”.

[3]Ian De Felipe, Vagelis Hristidis Naphtali Rishe(2011),

“Keyword Search on Spatial Databases”, IEEE, 2011

[4] Lu Qin, Jeffrey Xu Yu, Lijun Chang, Yufei Tao

“Scalable Keyword Search on Large Data Streams”.

[5] Liang Jeff Chen, Yannis Papakonstantin(2010),

“Supporting Top-K Keyword Search in XML Databases”.

[6] Utharn Buranasaksee, Kriengkrai Porkaew, and

Umaporn Supasitthimethee (2010), “Answer Aggregation

for Keyword Search over Relational Databases”.

[7] Bolin Ding, Bo Zhao, Cindy Xide Lin, Jiawei

Han(2011), “Efficient Keyword-Based Search for Top-K

Cells in Text Cube”.

[8] Roberto De Virgilio (2011), “Efficient and Effective

Ranking in Top-k exploration for Keyword Search on

RDF”.

[9] Zhancheng kong & kunlong zhang (2011),

”Summarizing keyword search in relational database”.

AUTHOR PROFILE

ISSN: 2278 – 1323

International Journal of Advanced Research in Computer Engineering & Technology

Volume 1, Issue 3, May2012

98

All Rights Reserved © 2012 IJARCET

Navneet Kaur, currently doing M.Tech from Lovely

Professional University (Phagwara). Research paper

published “A Review Study of Keyword search over

Relational database using ranking method” in ICRTCTA,

April(2012). Currently doing research “Keyword Search in

Distributed Environment”.

Rajdeep Kaur, currently work as a Assistant Professor in

Lovely Professional University(Phagwara). She has done

M.Tech from Lovely Professional University. Now a days,

doing research on data mining algorithms.

Navjot Kaur, doing M.Tech from Lovely Professional

University (Phagwara) in information technology.

Currently research on “Enchancement in K-Means

Clustering Algorthims using ranking method” and Paper

published in “Comparsion of K-Means clutersing and

various clustering algorithms”, ICRTCTA, April (2012).

