

ISSN: 2278 – 1323
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 1, Issue 10, December 2012

 91
All Rights Reserved © 2012 IJARCET

Abstract— Dynamic loading is an important mechanism for

software development. It allows an application, the flexibility to

dynamically link a component and use its exported

functionalities. Dynamic loading is a mechanism by which a

computer program can, at run time, load a library into

memory, retrieve the addresses of functions and variables

contained in the library, execute those functions or access those

variables, and unload the library from memory. An effective

dynamic analysis to detect vulnerable and unsafe dynamic

component loadings is proposed. This work introduces the first

automated technique to detect and analyze vulnerabilities and

errors related to the dynamic component loading. This analysis

has two phases: 1) Online Phase to apply dynamic binary

instrumentation to collect runtime information on component

loading , and 2) Offline Phase to analyze the collected

information to detect vulnerable component loadings . The

technique uses a set of practical tools for detecting unsafe

component loadings on Microsoft Windows and Linux. An

extensive analysis of unsafe component loadings on various

types of popular software has been conducted.

Index Terms— Binary Instrumentation, Dynamic loading,

Unsafe Component Loading, Vulnerability.

I. INTRODUCTION

Dynamic loading is a mechanism by which a computer

program can, at run time, load a library into memory, retrieve

the addresses of functions and variables contained in the

library, execute those functions or access those variables, and

unload the library from memory. Unlike static linking and

loadtime linking, this mechanism allows a computer program

to startup in the absence of these libraries, to discover

available libraries, and to potentially gain additional

functionality.

Dynamic loading is most frequently used in implementing

software plugins.For example, the Apache Web Server's

*.dso "dynamic shared object" plugin files are libraries

which are loaded at runtime with dynamic loading. Dynamic

loading is also used in implementing computer programs

where multiple different libraries may supply the requisite

functionality and where the user has the option to select

which library or libraries to provide.

Manuscript received Dec 21, 2012.

 Geethanjali.N, Department Of Computer Science and Engineering, SNS

College Of Technology, Coimbatore, India, 9344332080

Maragatham. T, Department Of Computer Science and Engineering,

SNS College Of Technology, Coimbatore, India,

Dr. Karthik. S, Department Of Computer Science and Engineering, SNS

College Of Technology, Coimbatore, India,

 Not all systems support dynamic loading. UNIX-like

operating systems such as Mac OS X, Linux, and Solaris

provide dynamic loading with the C programming language

"dl" library. The Windows operating system provides

dynamic loading through the Windows API. Operating

systems may provide mechanisms to protect system

resources. For example, Microsoft Windows supports

Windows Resource Protection (WRP) to prevent system

files from being replaced. However, these do not prevent

loading of a malicious component located in a directory

searched before the directory where the intended component

resides.

Only because of the remote code executions attacks the

problem of an unsafe dynamic loading has received

attention to solve resolution failure and vulnerabilities. Its

exploitation requires local file system access on the victim

host, thus thery were not considered seriously. Consider an

example, that an attacker sends a vulnerable program (e.g.,

a Word document) and a malicious DLL, then the victim

opens the document after extracting the archive file, the

vulnerable program will load the malicious DLL. This leads

to remote code execution in the system.

Loading the library is accomplished with

LoadLibrary or LoadLibraryEx on Windows and

with dlopen on UNIX-like operating systems. Extracting

the contents of a dynamically loaded library is achieved with

GetProcAddress on Windows and with dlsym on

UNIX-like operating systems. Some software components

utilize functionalities at runtime exported by other

components such as shared libraries. This operation is

generally composed of three phases: resolution, loading,

and usage. Specifically, an application resolves the needed

target components, loads them, and utilizes the desired

functions provided by them.

II. RELATED WORK

a. Backwards compatible array bounds checking for c with

very low overhead

The problem of enforcing correct usage of array and

pointer references in C and C++ programs remains unsolved.

The approach proposed by Jones and Kelly (extended by

Ruwase and Lam) is the only one known of that does not

require significant manual changes to programs, but it has

extremely high overheads of 5x-6x and 11x–12x in the two

versions. The author describes a collection of techniques that

dramatically reduce the overhead of this approach, by

exploit- ing a fine-grain partitioning of memory called

Automatic Pool Allocation. Together, these techniques bring

the average overhead checks down to only 12% for a set of

bench- marks (but 69% for one case). This shows that the

SURVEY ON DYNAMIC ANALYSIS TO DETECT

VULNERABILITIES AND UNSAFE COMPONENT LOADINGS

Geethanjali.N1, Maragatham.T2, Dr. Karthik. S3

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Run_time_%28program_lifecycle_phase%29
http://en.wikipedia.org/wiki/Library_%28computing%29
http://en.wikipedia.org/wiki/Library_%28computing%29
http://en.wikipedia.org/wiki/Static_linking
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Library_%28computing%29
http://en.wikipedia.org/wiki/Library_%28computing%29
http://en.wikipedia.org/wiki/Plug-in_%28computing%29
http://en.wikipedia.org/wiki/Apache_Web_Server
http://en.wikipedia.org/wiki/Library_%28computing%29
http://en.wikipedia.org/wiki/Computer_programs
http://en.wikipedia.org/wiki/UNIX-like
http://en.wikipedia.org/wiki/Mac_OS_X
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/Solaris_%28operating_system%29
http://en.wikipedia.org/wiki/C_programming_language
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Windows_API
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/UNIX-like
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/UNIX
http://en.wikipedia.org/wiki/Operating_system

ISSN: 2278 – 1323
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 1, Issue 10, December 2012

All Rights Reserved © 2012 IJARCET

92

memory partitioning is key to bringing down this overhead. It

also shows that this technique successfully detects all buffer

over- run violations in a test suite modeling reported

violations in some important real-world programs.

b. Dynamic Test Generation To Find Integer Bugs in x86

Binary Linux Programs

 For security vulnerabilities, common root cause is

considered as integer bugs, including integer overflow, width

conversion, and signed/unsigned conversion errors. The

author introduces a new methods for discovering integer

bugs using dynamic test generation on x86 binaries, and

describes key design choices in efficient symbolic execution

of such programs. The author implemented his methods in a

prototype tool SmartFuzz, which is used to analyze Linux

x86 binary executables. To aid in triaging and reporting bugs

found by SmartFuzz and the black-box fuzz testing tool zzuf,

the author also created a reporting service, metafuzz.com.

The report on experiments is gathered by applying these

tools to a range of software applications, including the

mplayer media player, the exiv2 image metadata library, and

ImageMagick convert. Also another report on using

SmartFuzz, zzuf, and metafuzz.com to perform testing at

scale with the Amazon Elastic Compute Cloud (EC2). For

reference, till date, the metafuzz.com site has recorded more

than 2; 614 test runs, comprising 2; 361; 595 test cases. The

experiment found approximately 77 total distinct bugs in 864

compute hours, costing us an average of $2:24 per bug at

current EC2 rates. The author quantifies the overlap in bugs

found by the two tools, and we show that SmartFuzz finds

bugs missed by zzuf, including one program where Smart-

Fuzz finds bugs but zzuf does not.

c. How I Learned to Stop Worrying and Love Plugins.

 The paper argues that browsers should be responsible for

specifying and enforcing security policies for browser

plugins. Browsers can significantly reduce the impact of

plugin vulnerabilities and eliminate much of the risk posed

by today’s plugin exploits, by enabling the browser to make

security decisions on behalf of the plugin. The author

proposes policies for document access, persistent state,

network connections and other devices that browser-based

security policy.

For videos, music, and documents, web browser plugins

have become the present tool on the Internet. The web

applications have faced radical change due to new,

feature-rich plugins. Consider YouTube works mostly

behind the plugin Flash Player YouTube work – without the

streaming video support added in Adobe Flash 7, YouTube

would not have taken off. Unfortunately, plugins are riddled

with security vulnerabilities and expose users to significant

risk. In today’s browsers, Plugins are considered to be the

single largest source of vulnerabilities, accounting for 476

reported vulnerabilities in 2007 compared to 163 for

browsers, including IE, Firefox, and Safari combined. To

implement its own security policy and enforcement

mechanisms that fail when an attacker can exploit a plugin,

each plugin is responsible itself. An plugin API is used by the

plugins to interact with the browser, such as the NPAPI,

supported by the browser. The common functionality of

Plugin APIs in browsers is that, the browser provides plugins

with document (i.e., DOM) access, network connectivity and

interaction with other browser components. Except for some

document accesses, each plugin is responsible for restricting

the use of this API by the plugin content as well as

controlling access to the underlying system.

d. Non-Control-Data Attacks Are Realistic Threats

 Most memory corruption attacks and Internet worms

follow a familiar pattern known as the control-data attack.

Hence, many defensive techniques are designed to protect

program control flow integrity. Although earlier work did

suggest the existence of attacks that do not alter control flow,

such attacks are generally believed to be rare against

real-world software. The key contribution of this paper is to

show that non-control-data attacks are realistic. The author

demonstrates that many real-world applications, including

FTP, SSH, Telnet, and HTTP servers, are vulnerable to such

attacks. For each case, the generated attack results in a

security compromise equivalent to that due to the control data

attack exploiting the same security bug.

 A variety of application data including user identity data,

configuration data, user input data, and decision-making data

are corrupted due to Non-control-data attacks. The success of

these attacks and the variety of applications and target data

suggest that potential attack patterns are diverse. Though

attackers are currently focused on control-data attacks, but it

is clear that when control flow protection techniques shut

them down, they have incentives to study and employ

non-control-data attacks. This emphasizes the importance of

future research efforts to address this realistic threat.

e. RICH: Automatically Protecting Against Integer-Based

Vulnerabilities

 The authors present the design and implementation of

RICH (Run-time Integer CHecking), a tool for efficiently

detecting integer-based attacks against C programs at run

time. There will be a frequent programming error and attack

in C integer bugs, when a variable value goes out of the range

of the machine word used to materialize it, e.g. when

assigning a large 32-bit int to a 16-bit short. We show that

safe and unsafe integer operations in C can be captured by

well-known sub-typing theory. The RICH compiler

extension compiles C programs to object code that monitors

its own execution to detect integer-based attacks. Here the

author implemented RICH as an extension to the GCC

compiler and tested it on several network servers and UNIX

utilities. Inspite of the radical change in integer operations,

the performance overhead of RICH is very low, averaging

about 5%. As per results given by the author, RICH found

two new integer bugs and caught all but one of the previously

known bugs we tested. These results show that RICH is a

useful and lightweight software testing tool and run-time

defense mechanism. RICH may generate false positives

when programmers use integer overflows deliberately and it

can miss some integer bugs because it does not model certain

C features.

III. CONCLUSION

 Software component loading is done in two ways

statically or dynamically.Dynamic loading is an important

mechanism for software development. It allows an

application the flexibility to dynamically link a component

ISSN: 2278 – 1323
International Journal of Advanced Research in Computer Engineering & Technology (IJARCET)

Volume 1, Issue 10, December 2012

 93
All Rights Reserved © 2012 IJARCET

and use its exported functionalities. Its benefits include

modularity and generic interfaces for third-party software

such as plug-ins. It also helps to isolate software bugs as bug

fixes of a shared library can be incorporated easily. Because

of these advantages, dynamic loading is widely used in

designing and implementing software. This made us present

a survey on different tools and techniques that is used to

detect vulnerabilities and attacks in the system. To detect

vulnerable and unsafe component loadings we have

discussed some of the available papers to detect attacks bugs

in the system. These references could also help to detect an

unsafe component loading during the program execution.

However, popular softwares such as Microsoft Windows

and Linux can be tested with this dynamic analysis. The

analysis can be in two phases (i.e., the dynamic profile

generation and the offline profile analysis) to reduce the

performance overhead incurred during dynamic binary

instrumentation. In future, the analysis may also include code

coverage problem along with the dynamic analysis technique

.

ACKNOWLEDGMENT

The authors would like to thank the Editor-in-Chief, the

Associate Editor and anonymous Referees for their

comments.

 REFERENCES

[1] D. Brumley, D. X. Song, T. Chiueh, R. Johnson, and H.

Lin, “RICH: Automatically Protecting against

Integer-Based Vulnerabilities,” Proc. Network and

Distributed System Security Symp., Mar. 2007.

[2] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D.

R. Engler, “Exe: Automatically Generating Inputs of

Death,” Proc. 13th ACM Conf. Computer and Comm.

Security, pp. 322-335, 2006.

[3] S. Chari, S. Halevi, and W. Venema, “Where Do You

Want to Go Today? Escalating Privileges by Pathname

Manipulation,” Proc. Network and Distributed System

Security Symp., Mar. 2010.

[4] S. Chen, J. Xu, E. C.Sezer, P. Gauriar, and R. K. Iyer,

“Non-Control-Data Attacks Are Realistic Threats,” Proc.

14th Conf. USENIX Security Symp., 2005.

[5] D. Dhurjati and V. Adve, “Backwards-Compatible Array

Bounds Checking for C with Very Low Overhead,” Proc.

28th Int’l Conf. Software Eng., pp. 162-171, 2006.

[6] C. Grier, S. T. King, and D. S. Wallach, “How I Learned

to Stop Worrying and Love Plugins,” Proc. Workshop

Web 2.0 Security and Privacy, May 2009.

[7] C. Grier, S. Tang, and S. T. King, “Secure Web Browsing

with the OP Web Browser,” Proc. IEEE Symp. Security

and Privacy, pp. 402-416, 2008.

[8]. “Hacking Toolkit Publishes DLL Hijacking Exploit,”

http://www.computerworld.com/s/article/9181513/Hacki

ng_toolkit_ publishes_DLL_hijacking_exploit, 2011.

[9]. T. Kwon and Z. Su, “Automatic Detection of Unsafe

Component Loadings,” Proc. 19th Int’l Symp. Software

Testing and Analysis, pp. 107-118, 2010.

[10]. D. Larochelle and D. Evans, “Statically Detecting

Likely Buffer Overflow Vulnerabilities,” Proc. 10th

Conf. USENIX Security Symp., 2001.

[11]. D. Molnar, X. C. Li, and D. A. Wagner, “Dynamic Test

Generation to Find Integer Bugs in x86 Binary Linux

Programs,” Proc. 18th Conf. USENIX Security Symp., pp.

67-82, 2009.

[12]. P. Saxena, P. Poosankam, S. McCamant, and D. Song,

“Loop-Extended Symbolic Execution on Binary

Programs,” Proc. 18th Int’l Symp. Software Testing and

Analysis, pp. 225-236, 2009.

 [13] “About the Security Content of Safari 3.1.2 for

Windows,” http:// support.apple.com/kb/HT2092, 2011.

Geethanjalin. N received B. E. degree in

Computer Science and Engineering at SNS

College of Technology, Coimbatore in

2011. She is currently pursuing her M. E.

degree in Software Engineering at SNS

College of Technology, Coimbatore. Her

area of interests are Networks and

Software Engineering.

Maragatham. T received B.E degree in

Computer Science and Engineering at M.

Kumarasamy College of Engineering

Karur in 2004. She has received Master

Degree in Engineering from Anna

University Coimbatore in 2011. She

published papers in two international

journals. She has presented papers in national and

international conferences.

Professor Dr.S.Karthik is presently

Professor & Dean in the Department of

Computer Science & Engineering, SNS

College of Technology, affiliated to Anna

University- Coimbatore, Tamilnadu,

India. He received the M.E degree from

the Anna University Chennai and Ph.D

degree from Anna University of Technology, Coimbatore.

His research interests include network security, web

services and wireless systems. In particular, he is

currently working in a research group developing new

Internet security architectures and active defense systems

against DDoS attacks. Dr.S.Karthik published more than

35 papers in refereed international journals and 25 papers

in conferences and has been involved many international

conferences as Technical Chair and tutorial presenter. He

is an active member of IEEE, ISTE, IAENG, IACSIT

and Indian Computer Society.

http://www.computerworld.com/s/article/9181513/Hacking_toolkit_
http://www.computerworld.com/s/article/9181513/Hacking_toolkit_
http://www.computerworld.com/s/article/9181513/Hacking_toolkit_

